Prepare JSON data from sentiment analysis to perform Logistic Regression











up vote
-2
down vote

favorite












I'm working on a text analysis project using Google's NLP API along with some other APIS. After performing the sentiment analysis I have its results in JSON format and now I need to apply the Logistic regression, I have no idea how can I prepare my JSON data to perform Logistic regress.



Here's a sample of my data:



{  
'documentSentiment':{
'polarity':-0.3,
'magnitude':0,
'score':0
},
'language':'en',
'sentences':[
{
'text':{
'content':'{\rtf1\ansi\ansicpg1252\cocoartf1639\cocoasubrtf100n{\fonttbl\f0\fswiss\fcharset0 Helvetica;}n{\colortbl;\red255\green255\blue255;}n{\*\expandedcolortbl;;}n\paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0n\pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural\partightenfactor0',
'beginOffset':-1
},
'sentiment':{
'polarity':-1,
'magnitude':0,
'score':0
}
},
{
'text':{
'content':'\f0\fs24 \cf0 This is the first text file.}',
'beginOffset':-1
},
'sentiment':{
'polarity':1,
'magnitude':0,
'score':0
}
}
]
}


How can I prepare this data to perform Logistic Regression?
I will use Pandas, Numpy and Sckikit-learn.










share|improve this question
























  • why you choose Logistic Regression? not neural networks like LSTM
    – chaos
    Nov 22 at 10:12










  • Hi @chaos, I have no idea about it.
    – Abdul Rehman
    Nov 22 at 10:14















up vote
-2
down vote

favorite












I'm working on a text analysis project using Google's NLP API along with some other APIS. After performing the sentiment analysis I have its results in JSON format and now I need to apply the Logistic regression, I have no idea how can I prepare my JSON data to perform Logistic regress.



Here's a sample of my data:



{  
'documentSentiment':{
'polarity':-0.3,
'magnitude':0,
'score':0
},
'language':'en',
'sentences':[
{
'text':{
'content':'{\rtf1\ansi\ansicpg1252\cocoartf1639\cocoasubrtf100n{\fonttbl\f0\fswiss\fcharset0 Helvetica;}n{\colortbl;\red255\green255\blue255;}n{\*\expandedcolortbl;;}n\paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0n\pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural\partightenfactor0',
'beginOffset':-1
},
'sentiment':{
'polarity':-1,
'magnitude':0,
'score':0
}
},
{
'text':{
'content':'\f0\fs24 \cf0 This is the first text file.}',
'beginOffset':-1
},
'sentiment':{
'polarity':1,
'magnitude':0,
'score':0
}
}
]
}


How can I prepare this data to perform Logistic Regression?
I will use Pandas, Numpy and Sckikit-learn.










share|improve this question
























  • why you choose Logistic Regression? not neural networks like LSTM
    – chaos
    Nov 22 at 10:12










  • Hi @chaos, I have no idea about it.
    – Abdul Rehman
    Nov 22 at 10:14













up vote
-2
down vote

favorite









up vote
-2
down vote

favorite











I'm working on a text analysis project using Google's NLP API along with some other APIS. After performing the sentiment analysis I have its results in JSON format and now I need to apply the Logistic regression, I have no idea how can I prepare my JSON data to perform Logistic regress.



Here's a sample of my data:



{  
'documentSentiment':{
'polarity':-0.3,
'magnitude':0,
'score':0
},
'language':'en',
'sentences':[
{
'text':{
'content':'{\rtf1\ansi\ansicpg1252\cocoartf1639\cocoasubrtf100n{\fonttbl\f0\fswiss\fcharset0 Helvetica;}n{\colortbl;\red255\green255\blue255;}n{\*\expandedcolortbl;;}n\paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0n\pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural\partightenfactor0',
'beginOffset':-1
},
'sentiment':{
'polarity':-1,
'magnitude':0,
'score':0
}
},
{
'text':{
'content':'\f0\fs24 \cf0 This is the first text file.}',
'beginOffset':-1
},
'sentiment':{
'polarity':1,
'magnitude':0,
'score':0
}
}
]
}


How can I prepare this data to perform Logistic Regression?
I will use Pandas, Numpy and Sckikit-learn.










share|improve this question















I'm working on a text analysis project using Google's NLP API along with some other APIS. After performing the sentiment analysis I have its results in JSON format and now I need to apply the Logistic regression, I have no idea how can I prepare my JSON data to perform Logistic regress.



Here's a sample of my data:



{  
'documentSentiment':{
'polarity':-0.3,
'magnitude':0,
'score':0
},
'language':'en',
'sentences':[
{
'text':{
'content':'{\rtf1\ansi\ansicpg1252\cocoartf1639\cocoasubrtf100n{\fonttbl\f0\fswiss\fcharset0 Helvetica;}n{\colortbl;\red255\green255\blue255;}n{\*\expandedcolortbl;;}n\paperw11900\paperh16840\margl1440\margr1440\vieww10800\viewh8400\viewkind0n\pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural\partightenfactor0',
'beginOffset':-1
},
'sentiment':{
'polarity':-1,
'magnitude':0,
'score':0
}
},
{
'text':{
'content':'\f0\fs24 \cf0 This is the first text file.}',
'beginOffset':-1
},
'sentiment':{
'polarity':1,
'magnitude':0,
'score':0
}
}
]
}


How can I prepare this data to perform Logistic Regression?
I will use Pandas, Numpy and Sckikit-learn.







python json machine-learning scikit-learn logistic-regression






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 22 at 10:12









Mike

1,8151421




1,8151421










asked Nov 22 at 9:59









Abdul Rehman

920322




920322












  • why you choose Logistic Regression? not neural networks like LSTM
    – chaos
    Nov 22 at 10:12










  • Hi @chaos, I have no idea about it.
    – Abdul Rehman
    Nov 22 at 10:14


















  • why you choose Logistic Regression? not neural networks like LSTM
    – chaos
    Nov 22 at 10:12










  • Hi @chaos, I have no idea about it.
    – Abdul Rehman
    Nov 22 at 10:14
















why you choose Logistic Regression? not neural networks like LSTM
– chaos
Nov 22 at 10:12




why you choose Logistic Regression? not neural networks like LSTM
– chaos
Nov 22 at 10:12












Hi @chaos, I have no idea about it.
– Abdul Rehman
Nov 22 at 10:14




Hi @chaos, I have no idea about it.
– Abdul Rehman
Nov 22 at 10:14

















active

oldest

votes











Your Answer






StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53428305%2fprepare-json-data-from-sentiment-analysis-to-perform-logistic-regression%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown






























active

oldest

votes













active

oldest

votes









active

oldest

votes






active

oldest

votes
















draft saved

draft discarded




















































Thanks for contributing an answer to Stack Overflow!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53428305%2fprepare-json-data-from-sentiment-analysis-to-perform-logistic-regression%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

How to ignore python UserWarning in pytest?

What visual should I use to simply compare current year value vs last year in Power BI desktop

Script to remove string up to first number