Posts

Showing posts from January 17, 2019

Actions MoveByOffset in Win App Driver: How can I see it or slow it down?

Image
up vote 0 down vote favorite I have the code below and it does drag and drop from a position to another position but it't not exactly the correct position. How can I slow it down or see what it's doing? I have used Mouse.Move in CodedUI and Mouse.StartDragging etc and you can set the speed and see what they're doing and correct them if required. It's for dragging something on a canvas to another item on a canvas so it is related to position. I know I'll get there at some point and PMeter is a great tool to use to help you here but I'd like to be able to see what I'm doing sometimes to debug. Actions builder = new Actions(session); builder.MoveByOffset(100, -85); builder.ClickAndHold(); builder.MoveByOffset(gridPos2.X - gridPos1.X, gridPos2.Y - gridPos1.Y); b...

Antonius Musa

Image
Ne doit pas être confondu avec Antonio Musa Brassavola. Antonius Musa Biographie Naissance 63 av. J.-C. Empire romain Décès 14 Empire romain Époque Empire romain Nationalité Rome antique Activités Médecin, botaniste Fratrie Euphorbus  ( en ) Autres informations Domaine Médecine modifier - modifier le code - modifier Wikidata Antonius Musa est un médecin d'Auguste, disciple du médecin Thémison de Laodicée [ 1 ] . Grec de nation, il avait d'abord été affranchi. En 23 av. J.-C., il guérit l'empereur Auguste d'une hépatite virale [ 2 ] en lui prescrivant, selon Pline, la laitue, interdite par le médecin précédent [ 3 ] , ou, selon Dion Cassius, des potions et des bains froids [ 4 ] . En reconnaissance, Auguste et le sénat lui accordèrent une forte somme et le droit de porter l'anneau d'or [ 4 ] , le peuple romain lui éleva une statue à côté de celle d'Esculape [ 5 ] . Plus tard sa compétence fut ...

Isomorphism between the Clifford group and the quaternions

Image
up vote 4 down vote favorite 2 How do I find an explicit isomorphism between the elements of the Clifford group and some 24 quaternions? The easy part: The multiplication of matrices should correspond to multiplication of quaternions. The identity matrix $I$ should be mapped to the quaternion $1$ . The hard part: To what should the other elements of the Clifford group be mapped? Since the following to elements generate the entire group, mapping these will be sufficient: $$H=frac{1}{sqrt{2}}begin{bmatrix}1&1\1&-1end{bmatrix}text{ and }P=begin{bmatrix}1&0\0&iend{bmatrix}$$ Can anybody help? clifford-group share | improve this question asked 7 hours ag...