How can I change the padded input size per channel in Pytorch?
I am trying to set up an image classifier using Pytorch. My sample images have 4 channels and are 28x28 pixels in size. I am trying to use the built-in torchvision.models.inception_v3() as my model. Whenever I try to run my code, I get this error:
RuntimeError: Calculated padded input size per channel: (1 x 1).
Kernel size: (3 x 3). Kernel size can't greater than actual input size
at
/opt/conda/conda-bld/pytorch_1524584710464/work/aten/src/THNN/generic/SpatialConvolutionMM.c:48
I can't find how to change the padded input size per channel or quite figure out what the error means. I figure that I must modify the padded input size per channel since I can't edit the Kernel size in the pre-made model.
I have tried padding, but it didn't help.
Here is a shortened part of my code that throws the error when I call train():
import torch
import torchvision as tv
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader
model = tv.models.inception_v3()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001, weight_decay=0)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.9)
trn_dataset = tv.datasets.ImageFolder(
"D:/tests/classification_test_data/trn",
transform=tv.transforms.Compose([tv.transforms.RandomRotation((0,275)), tv.transforms.RandomHorizontalFlip(),
tv.transforms.ToTensor()]))
trn_dataloader = DataLoader(trn_dataset, batch_size=32, num_workers=4, shuffle=True)
for epoch in range(0, 10):
train(trn_dataloader, model, criterion, optimizer, lr_scheduler, 6, 32)
print("End of training")
def train(train_loader, model, criterion, optimizer, scheduler, num_classes, batch_size):
model.train()
scheduler.step()
for index, data in enumerate(train_loader):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
outputs_flatten = flatten_outputs(outputs, num_classes)
loss = criterion(outputs_flatten, labels)
loss.backward()
optimizer.step()
def flatten_outputs(predictions, number_of_classes):
logits_permuted = predictions.permute(0, 2, 3, 1)
logits_permuted_cont = logits_permuted.contiguous()
outputs_flatten = logits_permuted_cont.view(-1, number_of_classes)
return outputs_flatten
pytorch torchvision
add a comment |
I am trying to set up an image classifier using Pytorch. My sample images have 4 channels and are 28x28 pixels in size. I am trying to use the built-in torchvision.models.inception_v3() as my model. Whenever I try to run my code, I get this error:
RuntimeError: Calculated padded input size per channel: (1 x 1).
Kernel size: (3 x 3). Kernel size can't greater than actual input size
at
/opt/conda/conda-bld/pytorch_1524584710464/work/aten/src/THNN/generic/SpatialConvolutionMM.c:48
I can't find how to change the padded input size per channel or quite figure out what the error means. I figure that I must modify the padded input size per channel since I can't edit the Kernel size in the pre-made model.
I have tried padding, but it didn't help.
Here is a shortened part of my code that throws the error when I call train():
import torch
import torchvision as tv
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader
model = tv.models.inception_v3()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001, weight_decay=0)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.9)
trn_dataset = tv.datasets.ImageFolder(
"D:/tests/classification_test_data/trn",
transform=tv.transforms.Compose([tv.transforms.RandomRotation((0,275)), tv.transforms.RandomHorizontalFlip(),
tv.transforms.ToTensor()]))
trn_dataloader = DataLoader(trn_dataset, batch_size=32, num_workers=4, shuffle=True)
for epoch in range(0, 10):
train(trn_dataloader, model, criterion, optimizer, lr_scheduler, 6, 32)
print("End of training")
def train(train_loader, model, criterion, optimizer, scheduler, num_classes, batch_size):
model.train()
scheduler.step()
for index, data in enumerate(train_loader):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
outputs_flatten = flatten_outputs(outputs, num_classes)
loss = criterion(outputs_flatten, labels)
loss.backward()
optimizer.step()
def flatten_outputs(predictions, number_of_classes):
logits_permuted = predictions.permute(0, 2, 3, 1)
logits_permuted_cont = logits_permuted.contiguous()
outputs_flatten = logits_permuted_cont.view(-1, number_of_classes)
return outputs_flatten
pytorch torchvision
add a comment |
I am trying to set up an image classifier using Pytorch. My sample images have 4 channels and are 28x28 pixels in size. I am trying to use the built-in torchvision.models.inception_v3() as my model. Whenever I try to run my code, I get this error:
RuntimeError: Calculated padded input size per channel: (1 x 1).
Kernel size: (3 x 3). Kernel size can't greater than actual input size
at
/opt/conda/conda-bld/pytorch_1524584710464/work/aten/src/THNN/generic/SpatialConvolutionMM.c:48
I can't find how to change the padded input size per channel or quite figure out what the error means. I figure that I must modify the padded input size per channel since I can't edit the Kernel size in the pre-made model.
I have tried padding, but it didn't help.
Here is a shortened part of my code that throws the error when I call train():
import torch
import torchvision as tv
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader
model = tv.models.inception_v3()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001, weight_decay=0)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.9)
trn_dataset = tv.datasets.ImageFolder(
"D:/tests/classification_test_data/trn",
transform=tv.transforms.Compose([tv.transforms.RandomRotation((0,275)), tv.transforms.RandomHorizontalFlip(),
tv.transforms.ToTensor()]))
trn_dataloader = DataLoader(trn_dataset, batch_size=32, num_workers=4, shuffle=True)
for epoch in range(0, 10):
train(trn_dataloader, model, criterion, optimizer, lr_scheduler, 6, 32)
print("End of training")
def train(train_loader, model, criterion, optimizer, scheduler, num_classes, batch_size):
model.train()
scheduler.step()
for index, data in enumerate(train_loader):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
outputs_flatten = flatten_outputs(outputs, num_classes)
loss = criterion(outputs_flatten, labels)
loss.backward()
optimizer.step()
def flatten_outputs(predictions, number_of_classes):
logits_permuted = predictions.permute(0, 2, 3, 1)
logits_permuted_cont = logits_permuted.contiguous()
outputs_flatten = logits_permuted_cont.view(-1, number_of_classes)
return outputs_flatten
pytorch torchvision
I am trying to set up an image classifier using Pytorch. My sample images have 4 channels and are 28x28 pixels in size. I am trying to use the built-in torchvision.models.inception_v3() as my model. Whenever I try to run my code, I get this error:
RuntimeError: Calculated padded input size per channel: (1 x 1).
Kernel size: (3 x 3). Kernel size can't greater than actual input size
at
/opt/conda/conda-bld/pytorch_1524584710464/work/aten/src/THNN/generic/SpatialConvolutionMM.c:48
I can't find how to change the padded input size per channel or quite figure out what the error means. I figure that I must modify the padded input size per channel since I can't edit the Kernel size in the pre-made model.
I have tried padding, but it didn't help.
Here is a shortened part of my code that throws the error when I call train():
import torch
import torchvision as tv
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader
model = tv.models.inception_v3()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001, weight_decay=0)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.9)
trn_dataset = tv.datasets.ImageFolder(
"D:/tests/classification_test_data/trn",
transform=tv.transforms.Compose([tv.transforms.RandomRotation((0,275)), tv.transforms.RandomHorizontalFlip(),
tv.transforms.ToTensor()]))
trn_dataloader = DataLoader(trn_dataset, batch_size=32, num_workers=4, shuffle=True)
for epoch in range(0, 10):
train(trn_dataloader, model, criterion, optimizer, lr_scheduler, 6, 32)
print("End of training")
def train(train_loader, model, criterion, optimizer, scheduler, num_classes, batch_size):
model.train()
scheduler.step()
for index, data in enumerate(train_loader):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
outputs_flatten = flatten_outputs(outputs, num_classes)
loss = criterion(outputs_flatten, labels)
loss.backward()
optimizer.step()
def flatten_outputs(predictions, number_of_classes):
logits_permuted = predictions.permute(0, 2, 3, 1)
logits_permuted_cont = logits_permuted.contiguous()
outputs_flatten = logits_permuted_cont.view(-1, number_of_classes)
return outputs_flatten
pytorch torchvision
pytorch torchvision
asked Nov 22 at 21:26
Erin P.
11
11
add a comment |
add a comment |
active
oldest
votes
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53438146%2fhow-can-i-change-the-padded-input-size-per-channel-in-pytorch%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
active
oldest
votes
active
oldest
votes
active
oldest
votes
active
oldest
votes
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53438146%2fhow-can-i-change-the-padded-input-size-per-channel-in-pytorch%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown