How can I change the padded input size per channel in Pytorch?












0














I am trying to set up an image classifier using Pytorch. My sample images have 4 channels and are 28x28 pixels in size. I am trying to use the built-in torchvision.models.inception_v3() as my model. Whenever I try to run my code, I get this error:




RuntimeError: Calculated padded input size per channel: (1 x 1).
Kernel size: (3 x 3). Kernel size can't greater than actual input size
at
/opt/conda/conda-bld/pytorch_1524584710464/work/aten/src/THNN/generic/SpatialConvolutionMM.c:48




I can't find how to change the padded input size per channel or quite figure out what the error means. I figure that I must modify the padded input size per channel since I can't edit the Kernel size in the pre-made model.



I have tried padding, but it didn't help.
Here is a shortened part of my code that throws the error when I call train():



import torch
import torchvision as tv
import torch.optim as optim
from torch import nn
from torch.utils.data import DataLoader

model = tv.models.inception_v3()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001, weight_decay=0)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.9)

trn_dataset = tv.datasets.ImageFolder(
"D:/tests/classification_test_data/trn",
transform=tv.transforms.Compose([tv.transforms.RandomRotation((0,275)), tv.transforms.RandomHorizontalFlip(),
tv.transforms.ToTensor()]))
trn_dataloader = DataLoader(trn_dataset, batch_size=32, num_workers=4, shuffle=True)

for epoch in range(0, 10):
train(trn_dataloader, model, criterion, optimizer, lr_scheduler, 6, 32)
print("End of training")


def train(train_loader, model, criterion, optimizer, scheduler, num_classes, batch_size):
model.train()
scheduler.step()

for index, data in enumerate(train_loader):
inputs, labels = data
optimizer.zero_grad()
outputs = model(inputs)
outputs_flatten = flatten_outputs(outputs, num_classes)
loss = criterion(outputs_flatten, labels)
loss.backward()
optimizer.step()


def flatten_outputs(predictions, number_of_classes):
logits_permuted = predictions.permute(0, 2, 3, 1)
logits_permuted_cont = logits_permuted.contiguous()
outputs_flatten = logits_permuted_cont.view(-1, number_of_classes)
return outputs_flatten









share|improve this question



























    0














    I am trying to set up an image classifier using Pytorch. My sample images have 4 channels and are 28x28 pixels in size. I am trying to use the built-in torchvision.models.inception_v3() as my model. Whenever I try to run my code, I get this error:




    RuntimeError: Calculated padded input size per channel: (1 x 1).
    Kernel size: (3 x 3). Kernel size can't greater than actual input size
    at
    /opt/conda/conda-bld/pytorch_1524584710464/work/aten/src/THNN/generic/SpatialConvolutionMM.c:48




    I can't find how to change the padded input size per channel or quite figure out what the error means. I figure that I must modify the padded input size per channel since I can't edit the Kernel size in the pre-made model.



    I have tried padding, but it didn't help.
    Here is a shortened part of my code that throws the error when I call train():



    import torch
    import torchvision as tv
    import torch.optim as optim
    from torch import nn
    from torch.utils.data import DataLoader

    model = tv.models.inception_v3()
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.0001, weight_decay=0)
    lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.9)

    trn_dataset = tv.datasets.ImageFolder(
    "D:/tests/classification_test_data/trn",
    transform=tv.transforms.Compose([tv.transforms.RandomRotation((0,275)), tv.transforms.RandomHorizontalFlip(),
    tv.transforms.ToTensor()]))
    trn_dataloader = DataLoader(trn_dataset, batch_size=32, num_workers=4, shuffle=True)

    for epoch in range(0, 10):
    train(trn_dataloader, model, criterion, optimizer, lr_scheduler, 6, 32)
    print("End of training")


    def train(train_loader, model, criterion, optimizer, scheduler, num_classes, batch_size):
    model.train()
    scheduler.step()

    for index, data in enumerate(train_loader):
    inputs, labels = data
    optimizer.zero_grad()
    outputs = model(inputs)
    outputs_flatten = flatten_outputs(outputs, num_classes)
    loss = criterion(outputs_flatten, labels)
    loss.backward()
    optimizer.step()


    def flatten_outputs(predictions, number_of_classes):
    logits_permuted = predictions.permute(0, 2, 3, 1)
    logits_permuted_cont = logits_permuted.contiguous()
    outputs_flatten = logits_permuted_cont.view(-1, number_of_classes)
    return outputs_flatten









    share|improve this question

























      0












      0








      0







      I am trying to set up an image classifier using Pytorch. My sample images have 4 channels and are 28x28 pixels in size. I am trying to use the built-in torchvision.models.inception_v3() as my model. Whenever I try to run my code, I get this error:




      RuntimeError: Calculated padded input size per channel: (1 x 1).
      Kernel size: (3 x 3). Kernel size can't greater than actual input size
      at
      /opt/conda/conda-bld/pytorch_1524584710464/work/aten/src/THNN/generic/SpatialConvolutionMM.c:48




      I can't find how to change the padded input size per channel or quite figure out what the error means. I figure that I must modify the padded input size per channel since I can't edit the Kernel size in the pre-made model.



      I have tried padding, but it didn't help.
      Here is a shortened part of my code that throws the error when I call train():



      import torch
      import torchvision as tv
      import torch.optim as optim
      from torch import nn
      from torch.utils.data import DataLoader

      model = tv.models.inception_v3()
      criterion = nn.CrossEntropyLoss()
      optimizer = optim.Adam(model.parameters(), lr=0.0001, weight_decay=0)
      lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.9)

      trn_dataset = tv.datasets.ImageFolder(
      "D:/tests/classification_test_data/trn",
      transform=tv.transforms.Compose([tv.transforms.RandomRotation((0,275)), tv.transforms.RandomHorizontalFlip(),
      tv.transforms.ToTensor()]))
      trn_dataloader = DataLoader(trn_dataset, batch_size=32, num_workers=4, shuffle=True)

      for epoch in range(0, 10):
      train(trn_dataloader, model, criterion, optimizer, lr_scheduler, 6, 32)
      print("End of training")


      def train(train_loader, model, criterion, optimizer, scheduler, num_classes, batch_size):
      model.train()
      scheduler.step()

      for index, data in enumerate(train_loader):
      inputs, labels = data
      optimizer.zero_grad()
      outputs = model(inputs)
      outputs_flatten = flatten_outputs(outputs, num_classes)
      loss = criterion(outputs_flatten, labels)
      loss.backward()
      optimizer.step()


      def flatten_outputs(predictions, number_of_classes):
      logits_permuted = predictions.permute(0, 2, 3, 1)
      logits_permuted_cont = logits_permuted.contiguous()
      outputs_flatten = logits_permuted_cont.view(-1, number_of_classes)
      return outputs_flatten









      share|improve this question













      I am trying to set up an image classifier using Pytorch. My sample images have 4 channels and are 28x28 pixels in size. I am trying to use the built-in torchvision.models.inception_v3() as my model. Whenever I try to run my code, I get this error:




      RuntimeError: Calculated padded input size per channel: (1 x 1).
      Kernel size: (3 x 3). Kernel size can't greater than actual input size
      at
      /opt/conda/conda-bld/pytorch_1524584710464/work/aten/src/THNN/generic/SpatialConvolutionMM.c:48




      I can't find how to change the padded input size per channel or quite figure out what the error means. I figure that I must modify the padded input size per channel since I can't edit the Kernel size in the pre-made model.



      I have tried padding, but it didn't help.
      Here is a shortened part of my code that throws the error when I call train():



      import torch
      import torchvision as tv
      import torch.optim as optim
      from torch import nn
      from torch.utils.data import DataLoader

      model = tv.models.inception_v3()
      criterion = nn.CrossEntropyLoss()
      optimizer = optim.Adam(model.parameters(), lr=0.0001, weight_decay=0)
      lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=4, gamma=0.9)

      trn_dataset = tv.datasets.ImageFolder(
      "D:/tests/classification_test_data/trn",
      transform=tv.transforms.Compose([tv.transforms.RandomRotation((0,275)), tv.transforms.RandomHorizontalFlip(),
      tv.transforms.ToTensor()]))
      trn_dataloader = DataLoader(trn_dataset, batch_size=32, num_workers=4, shuffle=True)

      for epoch in range(0, 10):
      train(trn_dataloader, model, criterion, optimizer, lr_scheduler, 6, 32)
      print("End of training")


      def train(train_loader, model, criterion, optimizer, scheduler, num_classes, batch_size):
      model.train()
      scheduler.step()

      for index, data in enumerate(train_loader):
      inputs, labels = data
      optimizer.zero_grad()
      outputs = model(inputs)
      outputs_flatten = flatten_outputs(outputs, num_classes)
      loss = criterion(outputs_flatten, labels)
      loss.backward()
      optimizer.step()


      def flatten_outputs(predictions, number_of_classes):
      logits_permuted = predictions.permute(0, 2, 3, 1)
      logits_permuted_cont = logits_permuted.contiguous()
      outputs_flatten = logits_permuted_cont.view(-1, number_of_classes)
      return outputs_flatten






      pytorch torchvision






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 22 at 21:26









      Erin P.

      11




      11





























          active

          oldest

          votes











          Your Answer






          StackExchange.ifUsing("editor", function () {
          StackExchange.using("externalEditor", function () {
          StackExchange.using("snippets", function () {
          StackExchange.snippets.init();
          });
          });
          }, "code-snippets");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "1"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          autoActivateHeartbeat: false,
          convertImagesToLinks: true,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: 10,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });














          draft saved

          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53438146%2fhow-can-i-change-the-padded-input-size-per-channel-in-pytorch%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown






























          active

          oldest

          votes













          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes
















          draft saved

          draft discarded




















































          Thanks for contributing an answer to Stack Overflow!


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.





          Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


          Please pay close attention to the following guidance:


          • Please be sure to answer the question. Provide details and share your research!

          But avoid



          • Asking for help, clarification, or responding to other answers.

          • Making statements based on opinion; back them up with references or personal experience.


          To learn more, see our tips on writing great answers.




          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53438146%2fhow-can-i-change-the-padded-input-size-per-channel-in-pytorch%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          What visual should I use to simply compare current year value vs last year in Power BI desktop

          How to ignore python UserWarning in pytest?

          Alexandru Averescu