How to avoid loading a large file into a python script repeatedly?
I've written a python script to take a large file (a matrix ~50k rows X ~500 cols) and use it as a dataset to train a random forest model.
My script has two functions, one to load the dataset and the other to train the random forest model using said data. These both work fine, but the file upload takes ~45 seconds and it's a pain to do this every time I want to train a subtly different model (testing many models on the same dataset). Here is the file upload code:
def load_train_data(train_file):
# Read in training file
train_f = io.open(train_file)
train_id_list =
train_val_list =
for line in train_f:
list_line = line.strip().split("t")
if list_line[0] != "Domain":
train_identifier = list_line[9]
train_values = list_line[12:]
train_id_list.append(train_identifier)
train_val_float = [float(x) for x in train_values]
train_val_list.append(train_val_float)
train_f.close()
train_val_array = np.asarray(train_val_list)
return(train_id_list,train_val_array)
This returns a numpy array with col. 9 as the label and cols. 12-end as the metadata to train the random forest.
I am going to train many different forms of my model with the same data, so I just want to upload the file one time and have it available to feed into my random forest function. I want the file to be an object I think (I am fairly new to python).
python object large-file-upload
add a comment |
I've written a python script to take a large file (a matrix ~50k rows X ~500 cols) and use it as a dataset to train a random forest model.
My script has two functions, one to load the dataset and the other to train the random forest model using said data. These both work fine, but the file upload takes ~45 seconds and it's a pain to do this every time I want to train a subtly different model (testing many models on the same dataset). Here is the file upload code:
def load_train_data(train_file):
# Read in training file
train_f = io.open(train_file)
train_id_list =
train_val_list =
for line in train_f:
list_line = line.strip().split("t")
if list_line[0] != "Domain":
train_identifier = list_line[9]
train_values = list_line[12:]
train_id_list.append(train_identifier)
train_val_float = [float(x) for x in train_values]
train_val_list.append(train_val_float)
train_f.close()
train_val_array = np.asarray(train_val_list)
return(train_id_list,train_val_array)
This returns a numpy array with col. 9 as the label and cols. 12-end as the metadata to train the random forest.
I am going to train many different forms of my model with the same data, so I just want to upload the file one time and have it available to feed into my random forest function. I want the file to be an object I think (I am fairly new to python).
python object large-file-upload
I believe that if you run in the python console, you could load the file once and then load other files / call functions separately, without having to reload the file
– user985366
Jun 23 '15 at 22:47
You must have a look at the pandas library for data handling. Manipulating data using it is a child's play. You will be able to grasp it fairly quickly if you have used R before. Specifically, you should have a look at theread_xxx
functions in the documentation which allow you to load different file formats into a dataframe.
– Lakshay Garg
Jun 23 '15 at 22:53
add a comment |
I've written a python script to take a large file (a matrix ~50k rows X ~500 cols) and use it as a dataset to train a random forest model.
My script has two functions, one to load the dataset and the other to train the random forest model using said data. These both work fine, but the file upload takes ~45 seconds and it's a pain to do this every time I want to train a subtly different model (testing many models on the same dataset). Here is the file upload code:
def load_train_data(train_file):
# Read in training file
train_f = io.open(train_file)
train_id_list =
train_val_list =
for line in train_f:
list_line = line.strip().split("t")
if list_line[0] != "Domain":
train_identifier = list_line[9]
train_values = list_line[12:]
train_id_list.append(train_identifier)
train_val_float = [float(x) for x in train_values]
train_val_list.append(train_val_float)
train_f.close()
train_val_array = np.asarray(train_val_list)
return(train_id_list,train_val_array)
This returns a numpy array with col. 9 as the label and cols. 12-end as the metadata to train the random forest.
I am going to train many different forms of my model with the same data, so I just want to upload the file one time and have it available to feed into my random forest function. I want the file to be an object I think (I am fairly new to python).
python object large-file-upload
I've written a python script to take a large file (a matrix ~50k rows X ~500 cols) and use it as a dataset to train a random forest model.
My script has two functions, one to load the dataset and the other to train the random forest model using said data. These both work fine, but the file upload takes ~45 seconds and it's a pain to do this every time I want to train a subtly different model (testing many models on the same dataset). Here is the file upload code:
def load_train_data(train_file):
# Read in training file
train_f = io.open(train_file)
train_id_list =
train_val_list =
for line in train_f:
list_line = line.strip().split("t")
if list_line[0] != "Domain":
train_identifier = list_line[9]
train_values = list_line[12:]
train_id_list.append(train_identifier)
train_val_float = [float(x) for x in train_values]
train_val_list.append(train_val_float)
train_f.close()
train_val_array = np.asarray(train_val_list)
return(train_id_list,train_val_array)
This returns a numpy array with col. 9 as the label and cols. 12-end as the metadata to train the random forest.
I am going to train many different forms of my model with the same data, so I just want to upload the file one time and have it available to feed into my random forest function. I want the file to be an object I think (I am fairly new to python).
python object large-file-upload
python object large-file-upload
asked Jun 23 '15 at 22:42
Brandon Kieft
315
315
I believe that if you run in the python console, you could load the file once and then load other files / call functions separately, without having to reload the file
– user985366
Jun 23 '15 at 22:47
You must have a look at the pandas library for data handling. Manipulating data using it is a child's play. You will be able to grasp it fairly quickly if you have used R before. Specifically, you should have a look at theread_xxx
functions in the documentation which allow you to load different file formats into a dataframe.
– Lakshay Garg
Jun 23 '15 at 22:53
add a comment |
I believe that if you run in the python console, you could load the file once and then load other files / call functions separately, without having to reload the file
– user985366
Jun 23 '15 at 22:47
You must have a look at the pandas library for data handling. Manipulating data using it is a child's play. You will be able to grasp it fairly quickly if you have used R before. Specifically, you should have a look at theread_xxx
functions in the documentation which allow you to load different file formats into a dataframe.
– Lakshay Garg
Jun 23 '15 at 22:53
I believe that if you run in the python console, you could load the file once and then load other files / call functions separately, without having to reload the file
– user985366
Jun 23 '15 at 22:47
I believe that if you run in the python console, you could load the file once and then load other files / call functions separately, without having to reload the file
– user985366
Jun 23 '15 at 22:47
You must have a look at the pandas library for data handling. Manipulating data using it is a child's play. You will be able to grasp it fairly quickly if you have used R before. Specifically, you should have a look at the
read_xxx
functions in the documentation which allow you to load different file formats into a dataframe.– Lakshay Garg
Jun 23 '15 at 22:53
You must have a look at the pandas library for data handling. Manipulating data using it is a child's play. You will be able to grasp it fairly quickly if you have used R before. Specifically, you should have a look at the
read_xxx
functions in the documentation which allow you to load different file formats into a dataframe.– Lakshay Garg
Jun 23 '15 at 22:53
add a comment |
4 Answers
4
active
oldest
votes
If I understand you correctly, the data set does not change but the model parameters do change and you are changing the parameters after each run.
I would put the file load script in one file, and run this in the python interpreter. Then the file will load and be saved in memory with whatever variable you use.
Then you can import another file with your model code, and run that with the training data as argument.
If all your model changes can be determined as parameters in a function call, all you need is to import your model and then call the training function with different parameter settings.
If you need to change the model code between runs, save with a new filename and import that one, run again and send the source data to that one.
If you don't want to save each model modification with a new filename, you might be able to use the reload functionality depending on python version, but it is not recommended (see Proper way to reload a python module from the console)
add a comment |
Simplest way would be to cache the results, like so:
_train_data_cache = {}
def load_cached_train_data(train_file):
if train_file not in _train_data_cache:
_train_data_cache[train_file] = load_train_data(train_file)
return _train_data_cache[train_file]
add a comment |
Try to learn about Python data serialization. You would basically be storing the large file as a python specific, serialized binary object using python's marshal function. This would drastically speed up IO of the file. See these benchmarks for performance variations. However, if these random forest models are all trained at the same time then you could just train them against the data-set you already have in memory then release train data after completion.
add a comment |
Load your data in ipython.
my_data = open("data.txt")
Write your codes in a python script, say example.py, which uses this data. At the top of the script example.py add these lines:
import sys
args = sys.argv
data = args[1]
...
Now run the python script in ipython:
%run example.py $mydata
Now, when running your python script, you don't need to load data multiple times.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f31014729%2fhow-to-avoid-loading-a-large-file-into-a-python-script-repeatedly%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
If I understand you correctly, the data set does not change but the model parameters do change and you are changing the parameters after each run.
I would put the file load script in one file, and run this in the python interpreter. Then the file will load and be saved in memory with whatever variable you use.
Then you can import another file with your model code, and run that with the training data as argument.
If all your model changes can be determined as parameters in a function call, all you need is to import your model and then call the training function with different parameter settings.
If you need to change the model code between runs, save with a new filename and import that one, run again and send the source data to that one.
If you don't want to save each model modification with a new filename, you might be able to use the reload functionality depending on python version, but it is not recommended (see Proper way to reload a python module from the console)
add a comment |
If I understand you correctly, the data set does not change but the model parameters do change and you are changing the parameters after each run.
I would put the file load script in one file, and run this in the python interpreter. Then the file will load and be saved in memory with whatever variable you use.
Then you can import another file with your model code, and run that with the training data as argument.
If all your model changes can be determined as parameters in a function call, all you need is to import your model and then call the training function with different parameter settings.
If you need to change the model code between runs, save with a new filename and import that one, run again and send the source data to that one.
If you don't want to save each model modification with a new filename, you might be able to use the reload functionality depending on python version, but it is not recommended (see Proper way to reload a python module from the console)
add a comment |
If I understand you correctly, the data set does not change but the model parameters do change and you are changing the parameters after each run.
I would put the file load script in one file, and run this in the python interpreter. Then the file will load and be saved in memory with whatever variable you use.
Then you can import another file with your model code, and run that with the training data as argument.
If all your model changes can be determined as parameters in a function call, all you need is to import your model and then call the training function with different parameter settings.
If you need to change the model code between runs, save with a new filename and import that one, run again and send the source data to that one.
If you don't want to save each model modification with a new filename, you might be able to use the reload functionality depending on python version, but it is not recommended (see Proper way to reload a python module from the console)
If I understand you correctly, the data set does not change but the model parameters do change and you are changing the parameters after each run.
I would put the file load script in one file, and run this in the python interpreter. Then the file will load and be saved in memory with whatever variable you use.
Then you can import another file with your model code, and run that with the training data as argument.
If all your model changes can be determined as parameters in a function call, all you need is to import your model and then call the training function with different parameter settings.
If you need to change the model code between runs, save with a new filename and import that one, run again and send the source data to that one.
If you don't want to save each model modification with a new filename, you might be able to use the reload functionality depending on python version, but it is not recommended (see Proper way to reload a python module from the console)
edited May 23 '17 at 12:14
Community♦
11
11
answered Jun 23 '15 at 22:55
user985366
7572827
7572827
add a comment |
add a comment |
Simplest way would be to cache the results, like so:
_train_data_cache = {}
def load_cached_train_data(train_file):
if train_file not in _train_data_cache:
_train_data_cache[train_file] = load_train_data(train_file)
return _train_data_cache[train_file]
add a comment |
Simplest way would be to cache the results, like so:
_train_data_cache = {}
def load_cached_train_data(train_file):
if train_file not in _train_data_cache:
_train_data_cache[train_file] = load_train_data(train_file)
return _train_data_cache[train_file]
add a comment |
Simplest way would be to cache the results, like so:
_train_data_cache = {}
def load_cached_train_data(train_file):
if train_file not in _train_data_cache:
_train_data_cache[train_file] = load_train_data(train_file)
return _train_data_cache[train_file]
Simplest way would be to cache the results, like so:
_train_data_cache = {}
def load_cached_train_data(train_file):
if train_file not in _train_data_cache:
_train_data_cache[train_file] = load_train_data(train_file)
return _train_data_cache[train_file]
answered Jun 23 '15 at 22:47
Malvolio
24.4k2180107
24.4k2180107
add a comment |
add a comment |
Try to learn about Python data serialization. You would basically be storing the large file as a python specific, serialized binary object using python's marshal function. This would drastically speed up IO of the file. See these benchmarks for performance variations. However, if these random forest models are all trained at the same time then you could just train them against the data-set you already have in memory then release train data after completion.
add a comment |
Try to learn about Python data serialization. You would basically be storing the large file as a python specific, serialized binary object using python's marshal function. This would drastically speed up IO of the file. See these benchmarks for performance variations. However, if these random forest models are all trained at the same time then you could just train them against the data-set you already have in memory then release train data after completion.
add a comment |
Try to learn about Python data serialization. You would basically be storing the large file as a python specific, serialized binary object using python's marshal function. This would drastically speed up IO of the file. See these benchmarks for performance variations. However, if these random forest models are all trained at the same time then you could just train them against the data-set you already have in memory then release train data after completion.
Try to learn about Python data serialization. You would basically be storing the large file as a python specific, serialized binary object using python's marshal function. This would drastically speed up IO of the file. See these benchmarks for performance variations. However, if these random forest models are all trained at the same time then you could just train them against the data-set you already have in memory then release train data after completion.
answered Jun 23 '15 at 22:51
umbreon222
15917
15917
add a comment |
add a comment |
Load your data in ipython.
my_data = open("data.txt")
Write your codes in a python script, say example.py, which uses this data. At the top of the script example.py add these lines:
import sys
args = sys.argv
data = args[1]
...
Now run the python script in ipython:
%run example.py $mydata
Now, when running your python script, you don't need to load data multiple times.
add a comment |
Load your data in ipython.
my_data = open("data.txt")
Write your codes in a python script, say example.py, which uses this data. At the top of the script example.py add these lines:
import sys
args = sys.argv
data = args[1]
...
Now run the python script in ipython:
%run example.py $mydata
Now, when running your python script, you don't need to load data multiple times.
add a comment |
Load your data in ipython.
my_data = open("data.txt")
Write your codes in a python script, say example.py, which uses this data. At the top of the script example.py add these lines:
import sys
args = sys.argv
data = args[1]
...
Now run the python script in ipython:
%run example.py $mydata
Now, when running your python script, you don't need to load data multiple times.
Load your data in ipython.
my_data = open("data.txt")
Write your codes in a python script, say example.py, which uses this data. At the top of the script example.py add these lines:
import sys
args = sys.argv
data = args[1]
...
Now run the python script in ipython:
%run example.py $mydata
Now, when running your python script, you don't need to load data multiple times.
edited Nov 23 at 3:08
AS Mackay
1,9134816
1,9134816
answered Nov 22 at 23:37
Mehdi Rostami
1113
1113
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f31014729%2fhow-to-avoid-loading-a-large-file-into-a-python-script-repeatedly%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
I believe that if you run in the python console, you could load the file once and then load other files / call functions separately, without having to reload the file
– user985366
Jun 23 '15 at 22:47
You must have a look at the pandas library for data handling. Manipulating data using it is a child's play. You will be able to grasp it fairly quickly if you have used R before. Specifically, you should have a look at the
read_xxx
functions in the documentation which allow you to load different file formats into a dataframe.– Lakshay Garg
Jun 23 '15 at 22:53