Evaluating the fast Fourier transform of Gaussian function in FORTRAN using FFTW3 library
I am trying to write a FORTRAN code to evaluate the fast Fourier transform of the Gaussian function f(r)=exp(-(r^2))
using FFTW3
library. As everyone knows, the Fourier transform of the Gaussian function is another Gaussian function.
I consider evaluating the Fourier-transform integral of the Gaussian function in the spherical coordinate.
Hence the resulting integral can be simplified to be integral of [r*exp(-(r^2))*sin(kr)]dr
.
I wrote the following FORTRAN code to evaluate the discrete SINE transform DST which is the discrete Fourier transform DFT using a PURELY real input array. DST is performed by C_FFTW_RODFT00
existing in FFTW3
, taking into account that the discrete values in position space are r=i*delta (i=1,2,...,1024), and the input array for DST is the function r*exp(-(r^2))
NOT the Gaussian. The sine function in the integral of [r*exp(-(r^2))*sin(kr)]dr
resulting from the INTEGRATION over the SPHERICAL coordinates, and it is NOT the imaginary part of exp(ik.r)
that appears when taking the analytic Fourier transform in general.
However, the result is not a Gaussian function in the momentum space.
Module FFTW3
use, intrinsic :: iso_c_binding
include 'fftw3.f03'
end module
program sine_FFT_transform
use FFTW3
implicit none
integer, parameter :: dp=selected_real_kind(8)
real(kind=dp), parameter :: pi=acos(-1.0_dp)
integer, parameter :: n=1024
real(kind=dp) :: delta, k
real(kind=dp) :: numerical_F_transform
integer :: i
type(C_PTR) :: my_plan
real(C_DOUBLE), dimension(1024) :: y
real(C_DOUBLE), dimension(1024) :: yy, yk
integer(C_FFTW_R2R_KIND) :: C_FFTW_RODFT00
my_plan= fftw_plan_r2r_1d(1024,y,yy,FFTW_FORWARD, FFTW_ESTIMATE)
delta=0.0125_dp
do i=1, n !inserting the input one-dimension position function
y(i)= 2*(delta)*(i-1)*exp(-((i-1)*delta)**2)
! I multiplied by 2 due to the definition of C_FFTW_RODFT00 in FFTW3
end do
call fftw_execute_r2r(my_plan, y,yy)
do i=2, n
k = (i-1)*pi/n/delta
yk(i) = 4*pi*delta*yy(i)/2 !I divide by 2 due to the definition of
!C_FFTW_RODFT00
numerical_F_transform=yk(i)/k
write(11,*) i,k,numerical_F_transform
end do
call fftw_destroy_plan(my_plan)
end program
Executing the previous code gives the following plot which is not for Gaussian function.
Can anyone help me understand what the problem is? I guess the problem is mainly due to FFTW3
. Maybe I did not use it properly especially concerning the boundary conditions.
fortran fft physics fftw
add a comment |
I am trying to write a FORTRAN code to evaluate the fast Fourier transform of the Gaussian function f(r)=exp(-(r^2))
using FFTW3
library. As everyone knows, the Fourier transform of the Gaussian function is another Gaussian function.
I consider evaluating the Fourier-transform integral of the Gaussian function in the spherical coordinate.
Hence the resulting integral can be simplified to be integral of [r*exp(-(r^2))*sin(kr)]dr
.
I wrote the following FORTRAN code to evaluate the discrete SINE transform DST which is the discrete Fourier transform DFT using a PURELY real input array. DST is performed by C_FFTW_RODFT00
existing in FFTW3
, taking into account that the discrete values in position space are r=i*delta (i=1,2,...,1024), and the input array for DST is the function r*exp(-(r^2))
NOT the Gaussian. The sine function in the integral of [r*exp(-(r^2))*sin(kr)]dr
resulting from the INTEGRATION over the SPHERICAL coordinates, and it is NOT the imaginary part of exp(ik.r)
that appears when taking the analytic Fourier transform in general.
However, the result is not a Gaussian function in the momentum space.
Module FFTW3
use, intrinsic :: iso_c_binding
include 'fftw3.f03'
end module
program sine_FFT_transform
use FFTW3
implicit none
integer, parameter :: dp=selected_real_kind(8)
real(kind=dp), parameter :: pi=acos(-1.0_dp)
integer, parameter :: n=1024
real(kind=dp) :: delta, k
real(kind=dp) :: numerical_F_transform
integer :: i
type(C_PTR) :: my_plan
real(C_DOUBLE), dimension(1024) :: y
real(C_DOUBLE), dimension(1024) :: yy, yk
integer(C_FFTW_R2R_KIND) :: C_FFTW_RODFT00
my_plan= fftw_plan_r2r_1d(1024,y,yy,FFTW_FORWARD, FFTW_ESTIMATE)
delta=0.0125_dp
do i=1, n !inserting the input one-dimension position function
y(i)= 2*(delta)*(i-1)*exp(-((i-1)*delta)**2)
! I multiplied by 2 due to the definition of C_FFTW_RODFT00 in FFTW3
end do
call fftw_execute_r2r(my_plan, y,yy)
do i=2, n
k = (i-1)*pi/n/delta
yk(i) = 4*pi*delta*yy(i)/2 !I divide by 2 due to the definition of
!C_FFTW_RODFT00
numerical_F_transform=yk(i)/k
write(11,*) i,k,numerical_F_transform
end do
call fftw_destroy_plan(my_plan)
end program
Executing the previous code gives the following plot which is not for Gaussian function.
Can anyone help me understand what the problem is? I guess the problem is mainly due to FFTW3
. Maybe I did not use it properly especially concerning the boundary conditions.
fortran fft physics fftw
1
Hi, the plot of your function is missing which makes it difficult to answer, as does being sat on a bus. But the 2 slightly strange things I can see are the one roygvib mentions, that you create the plan with yk but use yy in the transform, and that for the frequencies while your version is not wrong it is more usual to have the second half of the range as negative frequencies - that way if you have done the FFT right the plot will look lie a gaussian, as you have done it it will not (it will be 2 "1/2 Gaussians", one at either end of the range)
– Ian Bush
Nov 23 '18 at 16:28
Thank roygvib and Ian Bush. Your answers were helpful. there is no problem with the negative frequencies, they can be generated once the positive frequencies are correct. After editing the code, there is still negative transforms in the graph which is below the x axis, and this does not make the plot to be Gaussian. The problem still exists !!!!
– Mohammed Alhissi
Nov 23 '18 at 21:54
add a comment |
I am trying to write a FORTRAN code to evaluate the fast Fourier transform of the Gaussian function f(r)=exp(-(r^2))
using FFTW3
library. As everyone knows, the Fourier transform of the Gaussian function is another Gaussian function.
I consider evaluating the Fourier-transform integral of the Gaussian function in the spherical coordinate.
Hence the resulting integral can be simplified to be integral of [r*exp(-(r^2))*sin(kr)]dr
.
I wrote the following FORTRAN code to evaluate the discrete SINE transform DST which is the discrete Fourier transform DFT using a PURELY real input array. DST is performed by C_FFTW_RODFT00
existing in FFTW3
, taking into account that the discrete values in position space are r=i*delta (i=1,2,...,1024), and the input array for DST is the function r*exp(-(r^2))
NOT the Gaussian. The sine function in the integral of [r*exp(-(r^2))*sin(kr)]dr
resulting from the INTEGRATION over the SPHERICAL coordinates, and it is NOT the imaginary part of exp(ik.r)
that appears when taking the analytic Fourier transform in general.
However, the result is not a Gaussian function in the momentum space.
Module FFTW3
use, intrinsic :: iso_c_binding
include 'fftw3.f03'
end module
program sine_FFT_transform
use FFTW3
implicit none
integer, parameter :: dp=selected_real_kind(8)
real(kind=dp), parameter :: pi=acos(-1.0_dp)
integer, parameter :: n=1024
real(kind=dp) :: delta, k
real(kind=dp) :: numerical_F_transform
integer :: i
type(C_PTR) :: my_plan
real(C_DOUBLE), dimension(1024) :: y
real(C_DOUBLE), dimension(1024) :: yy, yk
integer(C_FFTW_R2R_KIND) :: C_FFTW_RODFT00
my_plan= fftw_plan_r2r_1d(1024,y,yy,FFTW_FORWARD, FFTW_ESTIMATE)
delta=0.0125_dp
do i=1, n !inserting the input one-dimension position function
y(i)= 2*(delta)*(i-1)*exp(-((i-1)*delta)**2)
! I multiplied by 2 due to the definition of C_FFTW_RODFT00 in FFTW3
end do
call fftw_execute_r2r(my_plan, y,yy)
do i=2, n
k = (i-1)*pi/n/delta
yk(i) = 4*pi*delta*yy(i)/2 !I divide by 2 due to the definition of
!C_FFTW_RODFT00
numerical_F_transform=yk(i)/k
write(11,*) i,k,numerical_F_transform
end do
call fftw_destroy_plan(my_plan)
end program
Executing the previous code gives the following plot which is not for Gaussian function.
Can anyone help me understand what the problem is? I guess the problem is mainly due to FFTW3
. Maybe I did not use it properly especially concerning the boundary conditions.
fortran fft physics fftw
I am trying to write a FORTRAN code to evaluate the fast Fourier transform of the Gaussian function f(r)=exp(-(r^2))
using FFTW3
library. As everyone knows, the Fourier transform of the Gaussian function is another Gaussian function.
I consider evaluating the Fourier-transform integral of the Gaussian function in the spherical coordinate.
Hence the resulting integral can be simplified to be integral of [r*exp(-(r^2))*sin(kr)]dr
.
I wrote the following FORTRAN code to evaluate the discrete SINE transform DST which is the discrete Fourier transform DFT using a PURELY real input array. DST is performed by C_FFTW_RODFT00
existing in FFTW3
, taking into account that the discrete values in position space are r=i*delta (i=1,2,...,1024), and the input array for DST is the function r*exp(-(r^2))
NOT the Gaussian. The sine function in the integral of [r*exp(-(r^2))*sin(kr)]dr
resulting from the INTEGRATION over the SPHERICAL coordinates, and it is NOT the imaginary part of exp(ik.r)
that appears when taking the analytic Fourier transform in general.
However, the result is not a Gaussian function in the momentum space.
Module FFTW3
use, intrinsic :: iso_c_binding
include 'fftw3.f03'
end module
program sine_FFT_transform
use FFTW3
implicit none
integer, parameter :: dp=selected_real_kind(8)
real(kind=dp), parameter :: pi=acos(-1.0_dp)
integer, parameter :: n=1024
real(kind=dp) :: delta, k
real(kind=dp) :: numerical_F_transform
integer :: i
type(C_PTR) :: my_plan
real(C_DOUBLE), dimension(1024) :: y
real(C_DOUBLE), dimension(1024) :: yy, yk
integer(C_FFTW_R2R_KIND) :: C_FFTW_RODFT00
my_plan= fftw_plan_r2r_1d(1024,y,yy,FFTW_FORWARD, FFTW_ESTIMATE)
delta=0.0125_dp
do i=1, n !inserting the input one-dimension position function
y(i)= 2*(delta)*(i-1)*exp(-((i-1)*delta)**2)
! I multiplied by 2 due to the definition of C_FFTW_RODFT00 in FFTW3
end do
call fftw_execute_r2r(my_plan, y,yy)
do i=2, n
k = (i-1)*pi/n/delta
yk(i) = 4*pi*delta*yy(i)/2 !I divide by 2 due to the definition of
!C_FFTW_RODFT00
numerical_F_transform=yk(i)/k
write(11,*) i,k,numerical_F_transform
end do
call fftw_destroy_plan(my_plan)
end program
Executing the previous code gives the following plot which is not for Gaussian function.
Can anyone help me understand what the problem is? I guess the problem is mainly due to FFTW3
. Maybe I did not use it properly especially concerning the boundary conditions.
fortran fft physics fftw
fortran fft physics fftw
edited Nov 25 '18 at 9:28
asked Nov 23 '18 at 2:17
Mohammed Alhissi
434
434
1
Hi, the plot of your function is missing which makes it difficult to answer, as does being sat on a bus. But the 2 slightly strange things I can see are the one roygvib mentions, that you create the plan with yk but use yy in the transform, and that for the frequencies while your version is not wrong it is more usual to have the second half of the range as negative frequencies - that way if you have done the FFT right the plot will look lie a gaussian, as you have done it it will not (it will be 2 "1/2 Gaussians", one at either end of the range)
– Ian Bush
Nov 23 '18 at 16:28
Thank roygvib and Ian Bush. Your answers were helpful. there is no problem with the negative frequencies, they can be generated once the positive frequencies are correct. After editing the code, there is still negative transforms in the graph which is below the x axis, and this does not make the plot to be Gaussian. The problem still exists !!!!
– Mohammed Alhissi
Nov 23 '18 at 21:54
add a comment |
1
Hi, the plot of your function is missing which makes it difficult to answer, as does being sat on a bus. But the 2 slightly strange things I can see are the one roygvib mentions, that you create the plan with yk but use yy in the transform, and that for the frequencies while your version is not wrong it is more usual to have the second half of the range as negative frequencies - that way if you have done the FFT right the plot will look lie a gaussian, as you have done it it will not (it will be 2 "1/2 Gaussians", one at either end of the range)
– Ian Bush
Nov 23 '18 at 16:28
Thank roygvib and Ian Bush. Your answers were helpful. there is no problem with the negative frequencies, they can be generated once the positive frequencies are correct. After editing the code, there is still negative transforms in the graph which is below the x axis, and this does not make the plot to be Gaussian. The problem still exists !!!!
– Mohammed Alhissi
Nov 23 '18 at 21:54
1
1
Hi, the plot of your function is missing which makes it difficult to answer, as does being sat on a bus. But the 2 slightly strange things I can see are the one roygvib mentions, that you create the plan with yk but use yy in the transform, and that for the frequencies while your version is not wrong it is more usual to have the second half of the range as negative frequencies - that way if you have done the FFT right the plot will look lie a gaussian, as you have done it it will not (it will be 2 "1/2 Gaussians", one at either end of the range)
– Ian Bush
Nov 23 '18 at 16:28
Hi, the plot of your function is missing which makes it difficult to answer, as does being sat on a bus. But the 2 slightly strange things I can see are the one roygvib mentions, that you create the plan with yk but use yy in the transform, and that for the frequencies while your version is not wrong it is more usual to have the second half of the range as negative frequencies - that way if you have done the FFT right the plot will look lie a gaussian, as you have done it it will not (it will be 2 "1/2 Gaussians", one at either end of the range)
– Ian Bush
Nov 23 '18 at 16:28
Thank roygvib and Ian Bush. Your answers were helpful. there is no problem with the negative frequencies, they can be generated once the positive frequencies are correct. After editing the code, there is still negative transforms in the graph which is below the x axis, and this does not make the plot to be Gaussian. The problem still exists !!!!
– Mohammed Alhissi
Nov 23 '18 at 21:54
Thank roygvib and Ian Bush. Your answers were helpful. there is no problem with the negative frequencies, they can be generated once the positive frequencies are correct. After editing the code, there is still negative transforms in the graph which is below the x axis, and this does not make the plot to be Gaussian. The problem still exists !!!!
– Mohammed Alhissi
Nov 23 '18 at 21:54
add a comment |
2 Answers
2
active
oldest
votes
Looking at the related pages in the FFTW site (Real-to-Real Transforms, transform kinds, Real-odd DFT (DST)) and the header file for Fortran, it seems that FFTW expects FFTW_RODFT00
etc rather than FFTW_FORWARD
for specifying the kind of
real-to-real transform. For example,
! my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_FORWARD, FFTW_ESTIMATE )
my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_RODFT00, FFTW_ESTIMATE )
performs the "type-I" discrete sine transform (DST-I) shown in the above page. This modification seems to fix the problem (i.e., makes the Fourier transform a Gaussian with positive values).
The following is a slightly modified version of OP's code to experiment the above modification:
! ... only the modified part is shown...
real(dp) :: delta, k, r, fftw, num, ana
integer :: i, j, n
type(C_PTR) :: my_plan
real(C_DOUBLE), allocatable :: y(:), yy(:)
delta = 0.0125_dp ; n = 1024 ! rmax = 12.8
! delta = 0.1_dp ; n = 128 ! rmax = 12.8
! delta = 0.2_dp ; n = 64 ! rmax = 12.8
! delta = 0.4_dp ; n = 32 ! rmax = 12.8
allocate( y( n ), yy( n ) )
! my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_FORWARD, FFTW_ESTIMATE )
my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_RODFT00, FFTW_ESTIMATE )
! Loop over r-grid
do i = 1, n
r = i * delta ! (2-a)
y( i )= r * exp( -r**2 )
end do
call fftw_execute_r2r( my_plan, y, yy )
! Loop over k-grid
do i = 1, n
! Result of FFTW
k = i * pi / ((n + 1) * delta) ! (2-b)
fftw = 4 * pi * delta * yy( i ) / k / 2 ! the last 2 due to RODFT00
! Numerical result via quadrature
num = 0
do j = 1, n
r = j * delta
num = num + r * exp( -r**2 ) * sin( k * r )
enddo
num = num * 4 * pi * delta / k
! Analytical result
ana = sqrt( pi )**3 * exp( -k**2 / 4 )
! Output
write(10,*) k, fftw
write(20,*) k, num
write(30,*) k, ana
end do
Compile (with gfortran-8.2 + FFTW3.3.8 + OSX10.11):
$ gfortran -fcheck=all -Wall sine.f90 -I/usr/local/Cellar/fftw/3.3.8/include -L/usr/local/Cellar/fftw/3.3.8/lib -lfftw3
If we use FFTW_FORWARD
as in the original code, we get
which has a negative lobe (where fort.10, fort.20, and fort.30 correspond to FFTW, quadrature, and analytical results). Modifying the code to use FFTW_RODFT00
changes the result as below, so the modification seems to be working (but please see below for the grid definition).
Additional notes
- I have slightly modified the grid definition for r and k in my code (Lines (2-a) and (2-b)), which is found to improve the accuracy. But I'm still not sure whether the above definition matches the definition used by FFTW, so please read the manual for details...
The
fftw3.f03
header file gives the interface forfftw_plan_r2r_1d
type(C_PTR) function fftw_plan_r2r_1d(n,in,out,kind,flags) bind(C, name='fftw_plan_r2r_1d')
import
integer(C_INT), value :: n
real(C_DOUBLE), dimension(*), intent(out) :: in
real(C_DOUBLE), dimension(*), intent(out) :: out
integer(C_FFTW_R2R_KIND), value :: kind
integer(C_INT), value :: flags
end function fftw_plan_r2r_1d
(Because of no Tex support, this part is very ugly...) The integral of
4 pi r^2 * exp(-r^2) * sin(kr)/(kr)
for r = 0 -> infinite ispi^(3/2) * exp(-k^2 / 4)
(obtained from Wolfram Alpha or by noting that this is actually a 3-D Fourier transform of exp(-(x^2 + y^2 + z^2)) by exp(-i*(k1 x + k2 y + k3 z)) with k =(k1,k2,k3)). So, although a bit counter-intuitive, the result becomes a positive Gaussian.- I guess the r-grid can be chosen much coarser (e.g.
delta
up to 0.4), which gives almost the same accuracy as long as it covers the frequency domain of the transformed function (hereexp(-r^2)
).
1
This is the correct answer. I really did not have time to dig into this, but now seeing your change, it is indeed necessary.
– Vladimir F
Nov 25 '18 at 22:15
Thanks a lot @roygvib. I am really grateful for you. Your answer is correct and perfect.
– Mohammed Alhissi
Nov 26 '18 at 15:21
add a comment |
Of course there are negative components of the real part to the FFT of a limited Gaussian spectrum. You are just using the real part of the transform. So your plot is absolutely correct.
You seem to be mistaking the real part with the magnitude, which of course would not be negative. For that you would need to fftw_plan_dft_r2c_1d
and then calculate the absolute values of the complex coefficients. Or you might be mistaking the Fourier transform with a limited DFT.
You might want to check here to convince yourself of the correctness of you calculation above:
http://docs.mantidproject.org/nightly/algorithms/FFT-v1.html
Please do keep in mind that the plots on the above page are shifted, so that the 0 frequency is in the middle of the spectrum.
Citing yourself, the nummeric integration of [r*exp(-(r^2))*sin(kr)]dr
would have negative components for all k>1
if normalised to 0 for highest frequency.
TLDR: Your plot is absolute state of the art and inline with discrete and limited functional analysis.
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
StackExchange.using("externalEditor", function () {
StackExchange.using("snippets", function () {
StackExchange.snippets.init();
});
});
}, "code-snippets");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "1"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53439915%2fevaluating-the-fast-fourier-transform-of-gaussian-function-in-fortran-using-fftw%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
Looking at the related pages in the FFTW site (Real-to-Real Transforms, transform kinds, Real-odd DFT (DST)) and the header file for Fortran, it seems that FFTW expects FFTW_RODFT00
etc rather than FFTW_FORWARD
for specifying the kind of
real-to-real transform. For example,
! my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_FORWARD, FFTW_ESTIMATE )
my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_RODFT00, FFTW_ESTIMATE )
performs the "type-I" discrete sine transform (DST-I) shown in the above page. This modification seems to fix the problem (i.e., makes the Fourier transform a Gaussian with positive values).
The following is a slightly modified version of OP's code to experiment the above modification:
! ... only the modified part is shown...
real(dp) :: delta, k, r, fftw, num, ana
integer :: i, j, n
type(C_PTR) :: my_plan
real(C_DOUBLE), allocatable :: y(:), yy(:)
delta = 0.0125_dp ; n = 1024 ! rmax = 12.8
! delta = 0.1_dp ; n = 128 ! rmax = 12.8
! delta = 0.2_dp ; n = 64 ! rmax = 12.8
! delta = 0.4_dp ; n = 32 ! rmax = 12.8
allocate( y( n ), yy( n ) )
! my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_FORWARD, FFTW_ESTIMATE )
my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_RODFT00, FFTW_ESTIMATE )
! Loop over r-grid
do i = 1, n
r = i * delta ! (2-a)
y( i )= r * exp( -r**2 )
end do
call fftw_execute_r2r( my_plan, y, yy )
! Loop over k-grid
do i = 1, n
! Result of FFTW
k = i * pi / ((n + 1) * delta) ! (2-b)
fftw = 4 * pi * delta * yy( i ) / k / 2 ! the last 2 due to RODFT00
! Numerical result via quadrature
num = 0
do j = 1, n
r = j * delta
num = num + r * exp( -r**2 ) * sin( k * r )
enddo
num = num * 4 * pi * delta / k
! Analytical result
ana = sqrt( pi )**3 * exp( -k**2 / 4 )
! Output
write(10,*) k, fftw
write(20,*) k, num
write(30,*) k, ana
end do
Compile (with gfortran-8.2 + FFTW3.3.8 + OSX10.11):
$ gfortran -fcheck=all -Wall sine.f90 -I/usr/local/Cellar/fftw/3.3.8/include -L/usr/local/Cellar/fftw/3.3.8/lib -lfftw3
If we use FFTW_FORWARD
as in the original code, we get
which has a negative lobe (where fort.10, fort.20, and fort.30 correspond to FFTW, quadrature, and analytical results). Modifying the code to use FFTW_RODFT00
changes the result as below, so the modification seems to be working (but please see below for the grid definition).
Additional notes
- I have slightly modified the grid definition for r and k in my code (Lines (2-a) and (2-b)), which is found to improve the accuracy. But I'm still not sure whether the above definition matches the definition used by FFTW, so please read the manual for details...
The
fftw3.f03
header file gives the interface forfftw_plan_r2r_1d
type(C_PTR) function fftw_plan_r2r_1d(n,in,out,kind,flags) bind(C, name='fftw_plan_r2r_1d')
import
integer(C_INT), value :: n
real(C_DOUBLE), dimension(*), intent(out) :: in
real(C_DOUBLE), dimension(*), intent(out) :: out
integer(C_FFTW_R2R_KIND), value :: kind
integer(C_INT), value :: flags
end function fftw_plan_r2r_1d
(Because of no Tex support, this part is very ugly...) The integral of
4 pi r^2 * exp(-r^2) * sin(kr)/(kr)
for r = 0 -> infinite ispi^(3/2) * exp(-k^2 / 4)
(obtained from Wolfram Alpha or by noting that this is actually a 3-D Fourier transform of exp(-(x^2 + y^2 + z^2)) by exp(-i*(k1 x + k2 y + k3 z)) with k =(k1,k2,k3)). So, although a bit counter-intuitive, the result becomes a positive Gaussian.- I guess the r-grid can be chosen much coarser (e.g.
delta
up to 0.4), which gives almost the same accuracy as long as it covers the frequency domain of the transformed function (hereexp(-r^2)
).
1
This is the correct answer. I really did not have time to dig into this, but now seeing your change, it is indeed necessary.
– Vladimir F
Nov 25 '18 at 22:15
Thanks a lot @roygvib. I am really grateful for you. Your answer is correct and perfect.
– Mohammed Alhissi
Nov 26 '18 at 15:21
add a comment |
Looking at the related pages in the FFTW site (Real-to-Real Transforms, transform kinds, Real-odd DFT (DST)) and the header file for Fortran, it seems that FFTW expects FFTW_RODFT00
etc rather than FFTW_FORWARD
for specifying the kind of
real-to-real transform. For example,
! my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_FORWARD, FFTW_ESTIMATE )
my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_RODFT00, FFTW_ESTIMATE )
performs the "type-I" discrete sine transform (DST-I) shown in the above page. This modification seems to fix the problem (i.e., makes the Fourier transform a Gaussian with positive values).
The following is a slightly modified version of OP's code to experiment the above modification:
! ... only the modified part is shown...
real(dp) :: delta, k, r, fftw, num, ana
integer :: i, j, n
type(C_PTR) :: my_plan
real(C_DOUBLE), allocatable :: y(:), yy(:)
delta = 0.0125_dp ; n = 1024 ! rmax = 12.8
! delta = 0.1_dp ; n = 128 ! rmax = 12.8
! delta = 0.2_dp ; n = 64 ! rmax = 12.8
! delta = 0.4_dp ; n = 32 ! rmax = 12.8
allocate( y( n ), yy( n ) )
! my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_FORWARD, FFTW_ESTIMATE )
my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_RODFT00, FFTW_ESTIMATE )
! Loop over r-grid
do i = 1, n
r = i * delta ! (2-a)
y( i )= r * exp( -r**2 )
end do
call fftw_execute_r2r( my_plan, y, yy )
! Loop over k-grid
do i = 1, n
! Result of FFTW
k = i * pi / ((n + 1) * delta) ! (2-b)
fftw = 4 * pi * delta * yy( i ) / k / 2 ! the last 2 due to RODFT00
! Numerical result via quadrature
num = 0
do j = 1, n
r = j * delta
num = num + r * exp( -r**2 ) * sin( k * r )
enddo
num = num * 4 * pi * delta / k
! Analytical result
ana = sqrt( pi )**3 * exp( -k**2 / 4 )
! Output
write(10,*) k, fftw
write(20,*) k, num
write(30,*) k, ana
end do
Compile (with gfortran-8.2 + FFTW3.3.8 + OSX10.11):
$ gfortran -fcheck=all -Wall sine.f90 -I/usr/local/Cellar/fftw/3.3.8/include -L/usr/local/Cellar/fftw/3.3.8/lib -lfftw3
If we use FFTW_FORWARD
as in the original code, we get
which has a negative lobe (where fort.10, fort.20, and fort.30 correspond to FFTW, quadrature, and analytical results). Modifying the code to use FFTW_RODFT00
changes the result as below, so the modification seems to be working (but please see below for the grid definition).
Additional notes
- I have slightly modified the grid definition for r and k in my code (Lines (2-a) and (2-b)), which is found to improve the accuracy. But I'm still not sure whether the above definition matches the definition used by FFTW, so please read the manual for details...
The
fftw3.f03
header file gives the interface forfftw_plan_r2r_1d
type(C_PTR) function fftw_plan_r2r_1d(n,in,out,kind,flags) bind(C, name='fftw_plan_r2r_1d')
import
integer(C_INT), value :: n
real(C_DOUBLE), dimension(*), intent(out) :: in
real(C_DOUBLE), dimension(*), intent(out) :: out
integer(C_FFTW_R2R_KIND), value :: kind
integer(C_INT), value :: flags
end function fftw_plan_r2r_1d
(Because of no Tex support, this part is very ugly...) The integral of
4 pi r^2 * exp(-r^2) * sin(kr)/(kr)
for r = 0 -> infinite ispi^(3/2) * exp(-k^2 / 4)
(obtained from Wolfram Alpha or by noting that this is actually a 3-D Fourier transform of exp(-(x^2 + y^2 + z^2)) by exp(-i*(k1 x + k2 y + k3 z)) with k =(k1,k2,k3)). So, although a bit counter-intuitive, the result becomes a positive Gaussian.- I guess the r-grid can be chosen much coarser (e.g.
delta
up to 0.4), which gives almost the same accuracy as long as it covers the frequency domain of the transformed function (hereexp(-r^2)
).
1
This is the correct answer. I really did not have time to dig into this, but now seeing your change, it is indeed necessary.
– Vladimir F
Nov 25 '18 at 22:15
Thanks a lot @roygvib. I am really grateful for you. Your answer is correct and perfect.
– Mohammed Alhissi
Nov 26 '18 at 15:21
add a comment |
Looking at the related pages in the FFTW site (Real-to-Real Transforms, transform kinds, Real-odd DFT (DST)) and the header file for Fortran, it seems that FFTW expects FFTW_RODFT00
etc rather than FFTW_FORWARD
for specifying the kind of
real-to-real transform. For example,
! my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_FORWARD, FFTW_ESTIMATE )
my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_RODFT00, FFTW_ESTIMATE )
performs the "type-I" discrete sine transform (DST-I) shown in the above page. This modification seems to fix the problem (i.e., makes the Fourier transform a Gaussian with positive values).
The following is a slightly modified version of OP's code to experiment the above modification:
! ... only the modified part is shown...
real(dp) :: delta, k, r, fftw, num, ana
integer :: i, j, n
type(C_PTR) :: my_plan
real(C_DOUBLE), allocatable :: y(:), yy(:)
delta = 0.0125_dp ; n = 1024 ! rmax = 12.8
! delta = 0.1_dp ; n = 128 ! rmax = 12.8
! delta = 0.2_dp ; n = 64 ! rmax = 12.8
! delta = 0.4_dp ; n = 32 ! rmax = 12.8
allocate( y( n ), yy( n ) )
! my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_FORWARD, FFTW_ESTIMATE )
my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_RODFT00, FFTW_ESTIMATE )
! Loop over r-grid
do i = 1, n
r = i * delta ! (2-a)
y( i )= r * exp( -r**2 )
end do
call fftw_execute_r2r( my_plan, y, yy )
! Loop over k-grid
do i = 1, n
! Result of FFTW
k = i * pi / ((n + 1) * delta) ! (2-b)
fftw = 4 * pi * delta * yy( i ) / k / 2 ! the last 2 due to RODFT00
! Numerical result via quadrature
num = 0
do j = 1, n
r = j * delta
num = num + r * exp( -r**2 ) * sin( k * r )
enddo
num = num * 4 * pi * delta / k
! Analytical result
ana = sqrt( pi )**3 * exp( -k**2 / 4 )
! Output
write(10,*) k, fftw
write(20,*) k, num
write(30,*) k, ana
end do
Compile (with gfortran-8.2 + FFTW3.3.8 + OSX10.11):
$ gfortran -fcheck=all -Wall sine.f90 -I/usr/local/Cellar/fftw/3.3.8/include -L/usr/local/Cellar/fftw/3.3.8/lib -lfftw3
If we use FFTW_FORWARD
as in the original code, we get
which has a negative lobe (where fort.10, fort.20, and fort.30 correspond to FFTW, quadrature, and analytical results). Modifying the code to use FFTW_RODFT00
changes the result as below, so the modification seems to be working (but please see below for the grid definition).
Additional notes
- I have slightly modified the grid definition for r and k in my code (Lines (2-a) and (2-b)), which is found to improve the accuracy. But I'm still not sure whether the above definition matches the definition used by FFTW, so please read the manual for details...
The
fftw3.f03
header file gives the interface forfftw_plan_r2r_1d
type(C_PTR) function fftw_plan_r2r_1d(n,in,out,kind,flags) bind(C, name='fftw_plan_r2r_1d')
import
integer(C_INT), value :: n
real(C_DOUBLE), dimension(*), intent(out) :: in
real(C_DOUBLE), dimension(*), intent(out) :: out
integer(C_FFTW_R2R_KIND), value :: kind
integer(C_INT), value :: flags
end function fftw_plan_r2r_1d
(Because of no Tex support, this part is very ugly...) The integral of
4 pi r^2 * exp(-r^2) * sin(kr)/(kr)
for r = 0 -> infinite ispi^(3/2) * exp(-k^2 / 4)
(obtained from Wolfram Alpha or by noting that this is actually a 3-D Fourier transform of exp(-(x^2 + y^2 + z^2)) by exp(-i*(k1 x + k2 y + k3 z)) with k =(k1,k2,k3)). So, although a bit counter-intuitive, the result becomes a positive Gaussian.- I guess the r-grid can be chosen much coarser (e.g.
delta
up to 0.4), which gives almost the same accuracy as long as it covers the frequency domain of the transformed function (hereexp(-r^2)
).
Looking at the related pages in the FFTW site (Real-to-Real Transforms, transform kinds, Real-odd DFT (DST)) and the header file for Fortran, it seems that FFTW expects FFTW_RODFT00
etc rather than FFTW_FORWARD
for specifying the kind of
real-to-real transform. For example,
! my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_FORWARD, FFTW_ESTIMATE )
my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_RODFT00, FFTW_ESTIMATE )
performs the "type-I" discrete sine transform (DST-I) shown in the above page. This modification seems to fix the problem (i.e., makes the Fourier transform a Gaussian with positive values).
The following is a slightly modified version of OP's code to experiment the above modification:
! ... only the modified part is shown...
real(dp) :: delta, k, r, fftw, num, ana
integer :: i, j, n
type(C_PTR) :: my_plan
real(C_DOUBLE), allocatable :: y(:), yy(:)
delta = 0.0125_dp ; n = 1024 ! rmax = 12.8
! delta = 0.1_dp ; n = 128 ! rmax = 12.8
! delta = 0.2_dp ; n = 64 ! rmax = 12.8
! delta = 0.4_dp ; n = 32 ! rmax = 12.8
allocate( y( n ), yy( n ) )
! my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_FORWARD, FFTW_ESTIMATE )
my_plan= fftw_plan_r2r_1d( n, y, yy, FFTW_RODFT00, FFTW_ESTIMATE )
! Loop over r-grid
do i = 1, n
r = i * delta ! (2-a)
y( i )= r * exp( -r**2 )
end do
call fftw_execute_r2r( my_plan, y, yy )
! Loop over k-grid
do i = 1, n
! Result of FFTW
k = i * pi / ((n + 1) * delta) ! (2-b)
fftw = 4 * pi * delta * yy( i ) / k / 2 ! the last 2 due to RODFT00
! Numerical result via quadrature
num = 0
do j = 1, n
r = j * delta
num = num + r * exp( -r**2 ) * sin( k * r )
enddo
num = num * 4 * pi * delta / k
! Analytical result
ana = sqrt( pi )**3 * exp( -k**2 / 4 )
! Output
write(10,*) k, fftw
write(20,*) k, num
write(30,*) k, ana
end do
Compile (with gfortran-8.2 + FFTW3.3.8 + OSX10.11):
$ gfortran -fcheck=all -Wall sine.f90 -I/usr/local/Cellar/fftw/3.3.8/include -L/usr/local/Cellar/fftw/3.3.8/lib -lfftw3
If we use FFTW_FORWARD
as in the original code, we get
which has a negative lobe (where fort.10, fort.20, and fort.30 correspond to FFTW, quadrature, and analytical results). Modifying the code to use FFTW_RODFT00
changes the result as below, so the modification seems to be working (but please see below for the grid definition).
Additional notes
- I have slightly modified the grid definition for r and k in my code (Lines (2-a) and (2-b)), which is found to improve the accuracy. But I'm still not sure whether the above definition matches the definition used by FFTW, so please read the manual for details...
The
fftw3.f03
header file gives the interface forfftw_plan_r2r_1d
type(C_PTR) function fftw_plan_r2r_1d(n,in,out,kind,flags) bind(C, name='fftw_plan_r2r_1d')
import
integer(C_INT), value :: n
real(C_DOUBLE), dimension(*), intent(out) :: in
real(C_DOUBLE), dimension(*), intent(out) :: out
integer(C_FFTW_R2R_KIND), value :: kind
integer(C_INT), value :: flags
end function fftw_plan_r2r_1d
(Because of no Tex support, this part is very ugly...) The integral of
4 pi r^2 * exp(-r^2) * sin(kr)/(kr)
for r = 0 -> infinite ispi^(3/2) * exp(-k^2 / 4)
(obtained from Wolfram Alpha or by noting that this is actually a 3-D Fourier transform of exp(-(x^2 + y^2 + z^2)) by exp(-i*(k1 x + k2 y + k3 z)) with k =(k1,k2,k3)). So, although a bit counter-intuitive, the result becomes a positive Gaussian.- I guess the r-grid can be chosen much coarser (e.g.
delta
up to 0.4), which gives almost the same accuracy as long as it covers the frequency domain of the transformed function (hereexp(-r^2)
).
edited Nov 26 '18 at 21:20
answered Nov 25 '18 at 21:47
roygvib
5,0152830
5,0152830
1
This is the correct answer. I really did not have time to dig into this, but now seeing your change, it is indeed necessary.
– Vladimir F
Nov 25 '18 at 22:15
Thanks a lot @roygvib. I am really grateful for you. Your answer is correct and perfect.
– Mohammed Alhissi
Nov 26 '18 at 15:21
add a comment |
1
This is the correct answer. I really did not have time to dig into this, but now seeing your change, it is indeed necessary.
– Vladimir F
Nov 25 '18 at 22:15
Thanks a lot @roygvib. I am really grateful for you. Your answer is correct and perfect.
– Mohammed Alhissi
Nov 26 '18 at 15:21
1
1
This is the correct answer. I really did not have time to dig into this, but now seeing your change, it is indeed necessary.
– Vladimir F
Nov 25 '18 at 22:15
This is the correct answer. I really did not have time to dig into this, but now seeing your change, it is indeed necessary.
– Vladimir F
Nov 25 '18 at 22:15
Thanks a lot @roygvib. I am really grateful for you. Your answer is correct and perfect.
– Mohammed Alhissi
Nov 26 '18 at 15:21
Thanks a lot @roygvib. I am really grateful for you. Your answer is correct and perfect.
– Mohammed Alhissi
Nov 26 '18 at 15:21
add a comment |
Of course there are negative components of the real part to the FFT of a limited Gaussian spectrum. You are just using the real part of the transform. So your plot is absolutely correct.
You seem to be mistaking the real part with the magnitude, which of course would not be negative. For that you would need to fftw_plan_dft_r2c_1d
and then calculate the absolute values of the complex coefficients. Or you might be mistaking the Fourier transform with a limited DFT.
You might want to check here to convince yourself of the correctness of you calculation above:
http://docs.mantidproject.org/nightly/algorithms/FFT-v1.html
Please do keep in mind that the plots on the above page are shifted, so that the 0 frequency is in the middle of the spectrum.
Citing yourself, the nummeric integration of [r*exp(-(r^2))*sin(kr)]dr
would have negative components for all k>1
if normalised to 0 for highest frequency.
TLDR: Your plot is absolute state of the art and inline with discrete and limited functional analysis.
add a comment |
Of course there are negative components of the real part to the FFT of a limited Gaussian spectrum. You are just using the real part of the transform. So your plot is absolutely correct.
You seem to be mistaking the real part with the magnitude, which of course would not be negative. For that you would need to fftw_plan_dft_r2c_1d
and then calculate the absolute values of the complex coefficients. Or you might be mistaking the Fourier transform with a limited DFT.
You might want to check here to convince yourself of the correctness of you calculation above:
http://docs.mantidproject.org/nightly/algorithms/FFT-v1.html
Please do keep in mind that the plots on the above page are shifted, so that the 0 frequency is in the middle of the spectrum.
Citing yourself, the nummeric integration of [r*exp(-(r^2))*sin(kr)]dr
would have negative components for all k>1
if normalised to 0 for highest frequency.
TLDR: Your plot is absolute state of the art and inline with discrete and limited functional analysis.
add a comment |
Of course there are negative components of the real part to the FFT of a limited Gaussian spectrum. You are just using the real part of the transform. So your plot is absolutely correct.
You seem to be mistaking the real part with the magnitude, which of course would not be negative. For that you would need to fftw_plan_dft_r2c_1d
and then calculate the absolute values of the complex coefficients. Or you might be mistaking the Fourier transform with a limited DFT.
You might want to check here to convince yourself of the correctness of you calculation above:
http://docs.mantidproject.org/nightly/algorithms/FFT-v1.html
Please do keep in mind that the plots on the above page are shifted, so that the 0 frequency is in the middle of the spectrum.
Citing yourself, the nummeric integration of [r*exp(-(r^2))*sin(kr)]dr
would have negative components for all k>1
if normalised to 0 for highest frequency.
TLDR: Your plot is absolute state of the art and inline with discrete and limited functional analysis.
Of course there are negative components of the real part to the FFT of a limited Gaussian spectrum. You are just using the real part of the transform. So your plot is absolutely correct.
You seem to be mistaking the real part with the magnitude, which of course would not be negative. For that you would need to fftw_plan_dft_r2c_1d
and then calculate the absolute values of the complex coefficients. Or you might be mistaking the Fourier transform with a limited DFT.
You might want to check here to convince yourself of the correctness of you calculation above:
http://docs.mantidproject.org/nightly/algorithms/FFT-v1.html
Please do keep in mind that the plots on the above page are shifted, so that the 0 frequency is in the middle of the spectrum.
Citing yourself, the nummeric integration of [r*exp(-(r^2))*sin(kr)]dr
would have negative components for all k>1
if normalised to 0 for highest frequency.
TLDR: Your plot is absolute state of the art and inline with discrete and limited functional analysis.
edited Nov 24 '18 at 17:49
answered Nov 24 '18 at 17:20
Kaveh Vahedipour
2,2651416
2,2651416
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53439915%2fevaluating-the-fast-fourier-transform-of-gaussian-function-in-fortran-using-fftw%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
1
Hi, the plot of your function is missing which makes it difficult to answer, as does being sat on a bus. But the 2 slightly strange things I can see are the one roygvib mentions, that you create the plan with yk but use yy in the transform, and that for the frequencies while your version is not wrong it is more usual to have the second half of the range as negative frequencies - that way if you have done the FFT right the plot will look lie a gaussian, as you have done it it will not (it will be 2 "1/2 Gaussians", one at either end of the range)
– Ian Bush
Nov 23 '18 at 16:28
Thank roygvib and Ian Bush. Your answers were helpful. there is no problem with the negative frequencies, they can be generated once the positive frequencies are correct. After editing the code, there is still negative transforms in the graph which is below the x axis, and this does not make the plot to be Gaussian. The problem still exists !!!!
– Mohammed Alhissi
Nov 23 '18 at 21:54