how to split geojson data in columns with spark sql scala
up vote
1
down vote
favorite
I have GeoJSON data as structtype like this:
root
|-- features: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- geometry: struct (nullable = true)
| | | |-- coordinates: array (nullable = true)
| | | | |-- element: array (containsNull = true)
| | | | | |-- element: array (containsNull = true)
| | | | | | |-- element: double (containsNull = true)
| | | |-- type: string (nullable = true)
| | |-- properties: struct (nullable = true)
| | | |-- auswertezeit: string (nullable = true)
| | | |-- geschwindigkeit: long (nullable = true)
| | | |-- strecke_id: long (nullable = true)
| | | |-- verkehrsstatus: string (nullable = true)
| | |-- type: string (nullable = true)
|-- type: string (nullable = true)
and i will split data in Columns: strecke_id, auswertezeit, strecke_id, verkehrsstatus, geschwindigkeit and coordinates.
Thank you for your help
scala apache-spark-sql
add a comment |
up vote
1
down vote
favorite
I have GeoJSON data as structtype like this:
root
|-- features: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- geometry: struct (nullable = true)
| | | |-- coordinates: array (nullable = true)
| | | | |-- element: array (containsNull = true)
| | | | | |-- element: array (containsNull = true)
| | | | | | |-- element: double (containsNull = true)
| | | |-- type: string (nullable = true)
| | |-- properties: struct (nullable = true)
| | | |-- auswertezeit: string (nullable = true)
| | | |-- geschwindigkeit: long (nullable = true)
| | | |-- strecke_id: long (nullable = true)
| | | |-- verkehrsstatus: string (nullable = true)
| | |-- type: string (nullable = true)
|-- type: string (nullable = true)
and i will split data in Columns: strecke_id, auswertezeit, strecke_id, verkehrsstatus, geschwindigkeit and coordinates.
Thank you for your help
scala apache-spark-sql
What version of Spark do you use? In 2.4 you have higher-order functions for this.
– Jacek Laskowski
Nov 25 at 19:51
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
I have GeoJSON data as structtype like this:
root
|-- features: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- geometry: struct (nullable = true)
| | | |-- coordinates: array (nullable = true)
| | | | |-- element: array (containsNull = true)
| | | | | |-- element: array (containsNull = true)
| | | | | | |-- element: double (containsNull = true)
| | | |-- type: string (nullable = true)
| | |-- properties: struct (nullable = true)
| | | |-- auswertezeit: string (nullable = true)
| | | |-- geschwindigkeit: long (nullable = true)
| | | |-- strecke_id: long (nullable = true)
| | | |-- verkehrsstatus: string (nullable = true)
| | |-- type: string (nullable = true)
|-- type: string (nullable = true)
and i will split data in Columns: strecke_id, auswertezeit, strecke_id, verkehrsstatus, geschwindigkeit and coordinates.
Thank you for your help
scala apache-spark-sql
I have GeoJSON data as structtype like this:
root
|-- features: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- geometry: struct (nullable = true)
| | | |-- coordinates: array (nullable = true)
| | | | |-- element: array (containsNull = true)
| | | | | |-- element: array (containsNull = true)
| | | | | | |-- element: double (containsNull = true)
| | | |-- type: string (nullable = true)
| | |-- properties: struct (nullable = true)
| | | |-- auswertezeit: string (nullable = true)
| | | |-- geschwindigkeit: long (nullable = true)
| | | |-- strecke_id: long (nullable = true)
| | | |-- verkehrsstatus: string (nullable = true)
| | |-- type: string (nullable = true)
|-- type: string (nullable = true)
and i will split data in Columns: strecke_id, auswertezeit, strecke_id, verkehrsstatus, geschwindigkeit and coordinates.
Thank you for your help
scala apache-spark-sql
scala apache-spark-sql
edited Nov 25 at 19:51
Jacek Laskowski
42.8k16126256
42.8k16126256
asked Nov 22 at 15:31
Mak
106
106
What version of Spark do you use? In 2.4 you have higher-order functions for this.
– Jacek Laskowski
Nov 25 at 19:51
add a comment |
What version of Spark do you use? In 2.4 you have higher-order functions for this.
– Jacek Laskowski
Nov 25 at 19:51
What version of Spark do you use? In 2.4 you have higher-order functions for this.
– Jacek Laskowski
Nov 25 at 19:51
What version of Spark do you use? In 2.4 you have higher-order functions for this.
– Jacek Laskowski
Nov 25 at 19:51
add a comment |
1 Answer
1
active
oldest
votes
up vote
0
down vote
accepted
Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:
import sparkSession.implicits._
val geoDF = sparkSession.read.json("./src/test/resources/geo.json")
val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
.select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
"exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")
resultDf.show()
resultDf.printSchema()
Input data (formatted):
{
"features": [
{
"properties": {
"auswertezeit": "x",
"geschwindigkeit": 1,
"strecke_id": 11,
"verkehrsstatus": "xx"
}
},
{
"properties": {
"auswertezeit": "y",
"geschwindigkeit": 2,
"strecke_id": 22,
"verkehrsstatus": "yy"
}
}
],
"type": "xyz"
}
Result:
+------------+---------------+----------+--------------+
|auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
+------------+---------------+----------+--------------+
| x| 1| 11| xx|
| y| 2| 22| yy|
+------------+---------------+----------+--------------+
root
|-- auswertezeit: string (nullable = true)
|-- geschwindigkeit: long (nullable = true)
|-- strecke_id: long (nullable = true)
|-- verkehrsstatus: string (nullable = true)
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
0
down vote
accepted
Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:
import sparkSession.implicits._
val geoDF = sparkSession.read.json("./src/test/resources/geo.json")
val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
.select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
"exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")
resultDf.show()
resultDf.printSchema()
Input data (formatted):
{
"features": [
{
"properties": {
"auswertezeit": "x",
"geschwindigkeit": 1,
"strecke_id": 11,
"verkehrsstatus": "xx"
}
},
{
"properties": {
"auswertezeit": "y",
"geschwindigkeit": 2,
"strecke_id": 22,
"verkehrsstatus": "yy"
}
}
],
"type": "xyz"
}
Result:
+------------+---------------+----------+--------------+
|auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
+------------+---------------+----------+--------------+
| x| 1| 11| xx|
| y| 2| 22| yy|
+------------+---------------+----------+--------------+
root
|-- auswertezeit: string (nullable = true)
|-- geschwindigkeit: long (nullable = true)
|-- strecke_id: long (nullable = true)
|-- verkehrsstatus: string (nullable = true)
add a comment |
up vote
0
down vote
accepted
Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:
import sparkSession.implicits._
val geoDF = sparkSession.read.json("./src/test/resources/geo.json")
val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
.select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
"exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")
resultDf.show()
resultDf.printSchema()
Input data (formatted):
{
"features": [
{
"properties": {
"auswertezeit": "x",
"geschwindigkeit": 1,
"strecke_id": 11,
"verkehrsstatus": "xx"
}
},
{
"properties": {
"auswertezeit": "y",
"geschwindigkeit": 2,
"strecke_id": 22,
"verkehrsstatus": "yy"
}
}
],
"type": "xyz"
}
Result:
+------------+---------------+----------+--------------+
|auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
+------------+---------------+----------+--------------+
| x| 1| 11| xx|
| y| 2| 22| yy|
+------------+---------------+----------+--------------+
root
|-- auswertezeit: string (nullable = true)
|-- geschwindigkeit: long (nullable = true)
|-- strecke_id: long (nullable = true)
|-- verkehrsstatus: string (nullable = true)
add a comment |
up vote
0
down vote
accepted
up vote
0
down vote
accepted
Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:
import sparkSession.implicits._
val geoDF = sparkSession.read.json("./src/test/resources/geo.json")
val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
.select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
"exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")
resultDf.show()
resultDf.printSchema()
Input data (formatted):
{
"features": [
{
"properties": {
"auswertezeit": "x",
"geschwindigkeit": 1,
"strecke_id": 11,
"verkehrsstatus": "xx"
}
},
{
"properties": {
"auswertezeit": "y",
"geschwindigkeit": 2,
"strecke_id": 22,
"verkehrsstatus": "yy"
}
}
],
"type": "xyz"
}
Result:
+------------+---------------+----------+--------------+
|auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
+------------+---------------+----------+--------------+
| x| 1| 11| xx|
| y| 2| 22| yy|
+------------+---------------+----------+--------------+
root
|-- auswertezeit: string (nullable = true)
|-- geschwindigkeit: long (nullable = true)
|-- strecke_id: long (nullable = true)
|-- verkehrsstatus: string (nullable = true)
Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:
import sparkSession.implicits._
val geoDF = sparkSession.read.json("./src/test/resources/geo.json")
val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
.select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
"exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")
resultDf.show()
resultDf.printSchema()
Input data (formatted):
{
"features": [
{
"properties": {
"auswertezeit": "x",
"geschwindigkeit": 1,
"strecke_id": 11,
"verkehrsstatus": "xx"
}
},
{
"properties": {
"auswertezeit": "y",
"geschwindigkeit": 2,
"strecke_id": 22,
"verkehrsstatus": "yy"
}
}
],
"type": "xyz"
}
Result:
+------------+---------------+----------+--------------+
|auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
+------------+---------------+----------+--------------+
| x| 1| 11| xx|
| y| 2| 22| yy|
+------------+---------------+----------+--------------+
root
|-- auswertezeit: string (nullable = true)
|-- geschwindigkeit: long (nullable = true)
|-- strecke_id: long (nullable = true)
|-- verkehrsstatus: string (nullable = true)
answered Nov 22 at 20:20
morsik
699815
699815
add a comment |
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53434176%2fhow-to-split-geojson-data-in-columns-with-spark-sql-scala%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
What version of Spark do you use? In 2.4 you have higher-order functions for this.
– Jacek Laskowski
Nov 25 at 19:51