how to split geojson data in columns with spark sql scala











up vote
1
down vote

favorite
1












I have GeoJSON data as structtype like this:



root
|-- features: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- geometry: struct (nullable = true)
| | | |-- coordinates: array (nullable = true)
| | | | |-- element: array (containsNull = true)
| | | | | |-- element: array (containsNull = true)
| | | | | | |-- element: double (containsNull = true)
| | | |-- type: string (nullable = true)
| | |-- properties: struct (nullable = true)
| | | |-- auswertezeit: string (nullable = true)
| | | |-- geschwindigkeit: long (nullable = true)
| | | |-- strecke_id: long (nullable = true)
| | | |-- verkehrsstatus: string (nullable = true)
| | |-- type: string (nullable = true)
|-- type: string (nullable = true)


and i will split data in Columns: strecke_id, auswertezeit, strecke_id, verkehrsstatus, geschwindigkeit and coordinates.
Thank you for your help










share|improve this question
























  • What version of Spark do you use? In 2.4 you have higher-order functions for this.
    – Jacek Laskowski
    Nov 25 at 19:51















up vote
1
down vote

favorite
1












I have GeoJSON data as structtype like this:



root
|-- features: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- geometry: struct (nullable = true)
| | | |-- coordinates: array (nullable = true)
| | | | |-- element: array (containsNull = true)
| | | | | |-- element: array (containsNull = true)
| | | | | | |-- element: double (containsNull = true)
| | | |-- type: string (nullable = true)
| | |-- properties: struct (nullable = true)
| | | |-- auswertezeit: string (nullable = true)
| | | |-- geschwindigkeit: long (nullable = true)
| | | |-- strecke_id: long (nullable = true)
| | | |-- verkehrsstatus: string (nullable = true)
| | |-- type: string (nullable = true)
|-- type: string (nullable = true)


and i will split data in Columns: strecke_id, auswertezeit, strecke_id, verkehrsstatus, geschwindigkeit and coordinates.
Thank you for your help










share|improve this question
























  • What version of Spark do you use? In 2.4 you have higher-order functions for this.
    – Jacek Laskowski
    Nov 25 at 19:51













up vote
1
down vote

favorite
1









up vote
1
down vote

favorite
1






1





I have GeoJSON data as structtype like this:



root
|-- features: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- geometry: struct (nullable = true)
| | | |-- coordinates: array (nullable = true)
| | | | |-- element: array (containsNull = true)
| | | | | |-- element: array (containsNull = true)
| | | | | | |-- element: double (containsNull = true)
| | | |-- type: string (nullable = true)
| | |-- properties: struct (nullable = true)
| | | |-- auswertezeit: string (nullable = true)
| | | |-- geschwindigkeit: long (nullable = true)
| | | |-- strecke_id: long (nullable = true)
| | | |-- verkehrsstatus: string (nullable = true)
| | |-- type: string (nullable = true)
|-- type: string (nullable = true)


and i will split data in Columns: strecke_id, auswertezeit, strecke_id, verkehrsstatus, geschwindigkeit and coordinates.
Thank you for your help










share|improve this question















I have GeoJSON data as structtype like this:



root
|-- features: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- geometry: struct (nullable = true)
| | | |-- coordinates: array (nullable = true)
| | | | |-- element: array (containsNull = true)
| | | | | |-- element: array (containsNull = true)
| | | | | | |-- element: double (containsNull = true)
| | | |-- type: string (nullable = true)
| | |-- properties: struct (nullable = true)
| | | |-- auswertezeit: string (nullable = true)
| | | |-- geschwindigkeit: long (nullable = true)
| | | |-- strecke_id: long (nullable = true)
| | | |-- verkehrsstatus: string (nullable = true)
| | |-- type: string (nullable = true)
|-- type: string (nullable = true)


and i will split data in Columns: strecke_id, auswertezeit, strecke_id, verkehrsstatus, geschwindigkeit and coordinates.
Thank you for your help







scala apache-spark-sql






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 25 at 19:51









Jacek Laskowski

42.8k16126256




42.8k16126256










asked Nov 22 at 15:31









Mak

106




106












  • What version of Spark do you use? In 2.4 you have higher-order functions for this.
    – Jacek Laskowski
    Nov 25 at 19:51


















  • What version of Spark do you use? In 2.4 you have higher-order functions for this.
    – Jacek Laskowski
    Nov 25 at 19:51
















What version of Spark do you use? In 2.4 you have higher-order functions for this.
– Jacek Laskowski
Nov 25 at 19:51




What version of Spark do you use? In 2.4 you have higher-order functions for this.
– Jacek Laskowski
Nov 25 at 19:51












1 Answer
1






active

oldest

votes

















up vote
0
down vote



accepted










Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:



import sparkSession.implicits._

val geoDF = sparkSession.read.json("./src/test/resources/geo.json")

val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
.select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
"exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")

resultDf.show()
resultDf.printSchema()


Input data (formatted):



{
"features": [
{
"properties": {
"auswertezeit": "x",
"geschwindigkeit": 1,
"strecke_id": 11,
"verkehrsstatus": "xx"
}
},
{
"properties": {
"auswertezeit": "y",
"geschwindigkeit": 2,
"strecke_id": 22,
"verkehrsstatus": "yy"
}
}
],
"type": "xyz"
}


Result:



+------------+---------------+----------+--------------+
|auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
+------------+---------------+----------+--------------+
| x| 1| 11| xx|
| y| 2| 22| yy|
+------------+---------------+----------+--------------+

root
|-- auswertezeit: string (nullable = true)
|-- geschwindigkeit: long (nullable = true)
|-- strecke_id: long (nullable = true)
|-- verkehrsstatus: string (nullable = true)





share|improve this answer





















    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53434176%2fhow-to-split-geojson-data-in-columns-with-spark-sql-scala%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    0
    down vote



    accepted










    Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:



    import sparkSession.implicits._

    val geoDF = sparkSession.read.json("./src/test/resources/geo.json")

    val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
    .select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
    "exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")

    resultDf.show()
    resultDf.printSchema()


    Input data (formatted):



    {
    "features": [
    {
    "properties": {
    "auswertezeit": "x",
    "geschwindigkeit": 1,
    "strecke_id": 11,
    "verkehrsstatus": "xx"
    }
    },
    {
    "properties": {
    "auswertezeit": "y",
    "geschwindigkeit": 2,
    "strecke_id": 22,
    "verkehrsstatus": "yy"
    }
    }
    ],
    "type": "xyz"
    }


    Result:



    +------------+---------------+----------+--------------+
    |auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
    +------------+---------------+----------+--------------+
    | x| 1| 11| xx|
    | y| 2| 22| yy|
    +------------+---------------+----------+--------------+

    root
    |-- auswertezeit: string (nullable = true)
    |-- geschwindigkeit: long (nullable = true)
    |-- strecke_id: long (nullable = true)
    |-- verkehrsstatus: string (nullable = true)





    share|improve this answer

























      up vote
      0
      down vote



      accepted










      Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:



      import sparkSession.implicits._

      val geoDF = sparkSession.read.json("./src/test/resources/geo.json")

      val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
      .select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
      "exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")

      resultDf.show()
      resultDf.printSchema()


      Input data (formatted):



      {
      "features": [
      {
      "properties": {
      "auswertezeit": "x",
      "geschwindigkeit": 1,
      "strecke_id": 11,
      "verkehrsstatus": "xx"
      }
      },
      {
      "properties": {
      "auswertezeit": "y",
      "geschwindigkeit": 2,
      "strecke_id": 22,
      "verkehrsstatus": "yy"
      }
      }
      ],
      "type": "xyz"
      }


      Result:



      +------------+---------------+----------+--------------+
      |auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
      +------------+---------------+----------+--------------+
      | x| 1| 11| xx|
      | y| 2| 22| yy|
      +------------+---------------+----------+--------------+

      root
      |-- auswertezeit: string (nullable = true)
      |-- geschwindigkeit: long (nullable = true)
      |-- strecke_id: long (nullable = true)
      |-- verkehrsstatus: string (nullable = true)





      share|improve this answer























        up vote
        0
        down vote



        accepted







        up vote
        0
        down vote



        accepted






        Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:



        import sparkSession.implicits._

        val geoDF = sparkSession.read.json("./src/test/resources/geo.json")

        val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
        .select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
        "exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")

        resultDf.show()
        resultDf.printSchema()


        Input data (formatted):



        {
        "features": [
        {
        "properties": {
        "auswertezeit": "x",
        "geschwindigkeit": 1,
        "strecke_id": 11,
        "verkehrsstatus": "xx"
        }
        },
        {
        "properties": {
        "auswertezeit": "y",
        "geschwindigkeit": 2,
        "strecke_id": 22,
        "verkehrsstatus": "yy"
        }
        }
        ],
        "type": "xyz"
        }


        Result:



        +------------+---------------+----------+--------------+
        |auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
        +------------+---------------+----------+--------------+
        | x| 1| 11| xx|
        | y| 2| 22| yy|
        +------------+---------------+----------+--------------+

        root
        |-- auswertezeit: string (nullable = true)
        |-- geschwindigkeit: long (nullable = true)
        |-- strecke_id: long (nullable = true)
        |-- verkehrsstatus: string (nullable = true)





        share|improve this answer












        Here's a bit simplified example, but this will give you the direction to adjust logic based on your own specs:



        import sparkSession.implicits._

        val geoDF = sparkSession.read.json("./src/test/resources/geo.json")

        val resultDf = geoDF.withColumn("exploaded", functions.explode($"features"))
        .select("exploaded.properties.auswertezeit", "exploaded.properties.geschwindigkeit",
        "exploaded.properties.strecke_id", "exploaded.properties.verkehrsstatus")

        resultDf.show()
        resultDf.printSchema()


        Input data (formatted):



        {
        "features": [
        {
        "properties": {
        "auswertezeit": "x",
        "geschwindigkeit": 1,
        "strecke_id": 11,
        "verkehrsstatus": "xx"
        }
        },
        {
        "properties": {
        "auswertezeit": "y",
        "geschwindigkeit": 2,
        "strecke_id": 22,
        "verkehrsstatus": "yy"
        }
        }
        ],
        "type": "xyz"
        }


        Result:



        +------------+---------------+----------+--------------+
        |auswertezeit|geschwindigkeit|strecke_id|verkehrsstatus|
        +------------+---------------+----------+--------------+
        | x| 1| 11| xx|
        | y| 2| 22| yy|
        +------------+---------------+----------+--------------+

        root
        |-- auswertezeit: string (nullable = true)
        |-- geschwindigkeit: long (nullable = true)
        |-- strecke_id: long (nullable = true)
        |-- verkehrsstatus: string (nullable = true)






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 22 at 20:20









        morsik

        699815




        699815






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53434176%2fhow-to-split-geojson-data-in-columns-with-spark-sql-scala%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            What visual should I use to simply compare current year value vs last year in Power BI desktop

            Alexandru Averescu

            Trompette piccolo