Find existence of limit
up vote
2
down vote
favorite
Show that $left(frac{1}{|x|} +frac{1}{|y |}right)$ tends to infinity as $(x,y)$ tends to $(0,0)$.
I have used $x=rcos alpha$ and $y=rsin alpha$, $r>0$.But I got stuck as $left(frac{1}{|cos alpha|} +frac{1}{ |rsin alpha|}right) left(frac{1}{r}right)$ lies between $frac{1}{r}$ and infinity.
calculus
add a comment |
up vote
2
down vote
favorite
Show that $left(frac{1}{|x|} +frac{1}{|y |}right)$ tends to infinity as $(x,y)$ tends to $(0,0)$.
I have used $x=rcos alpha$ and $y=rsin alpha$, $r>0$.But I got stuck as $left(frac{1}{|cos alpha|} +frac{1}{ |rsin alpha|}right) left(frac{1}{r}right)$ lies between $frac{1}{r}$ and infinity.
calculus
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Show that $left(frac{1}{|x|} +frac{1}{|y |}right)$ tends to infinity as $(x,y)$ tends to $(0,0)$.
I have used $x=rcos alpha$ and $y=rsin alpha$, $r>0$.But I got stuck as $left(frac{1}{|cos alpha|} +frac{1}{ |rsin alpha|}right) left(frac{1}{r}right)$ lies between $frac{1}{r}$ and infinity.
calculus
Show that $left(frac{1}{|x|} +frac{1}{|y |}right)$ tends to infinity as $(x,y)$ tends to $(0,0)$.
I have used $x=rcos alpha$ and $y=rsin alpha$, $r>0$.But I got stuck as $left(frac{1}{|cos alpha|} +frac{1}{ |rsin alpha|}right) left(frac{1}{r}right)$ lies between $frac{1}{r}$ and infinity.
calculus
calculus
edited 3 hours ago
user376343
2,6912821
2,6912821
asked 3 hours ago
Kashmira
223
223
add a comment |
add a comment |
4 Answers
4
active
oldest
votes
up vote
5
down vote
Note that
$$frac1{|x|}+frac1{|y|}ge frac1{|x|}to infty$$
add a comment |
up vote
2
down vote
Hint:
Use the fact that if $|(x,y)| < epsilon$, then $|x|<epsilon$ and $|y|<epsilon$
add a comment |
up vote
2
down vote
Take the individual limits of each component. x and y are tending towards zero (the direction doesn't matter due to the magnitudes) so $frac{1}{|x|}$ and $frac{1}{|y|}$ both tend to infinity, and as a result so does their sum.
New contributor
You are right, but a few more words about why taking "individual limits of each component" can replace $(x,y)to (0,0)$ would be helpful in the present circumstance.
– hardmath
3 hours ago
add a comment |
up vote
0
down vote
We have:
$(x,y) rightarrow 0.$
Let $epsilon_n =1/n$, $n$ positive integer, be given.
Then $|(x^2+y^2)^{1/2}| < delta_n$ $(=epsilon_n)$ implies
$|(x^2+y^2)^{1/2}| < epsilon_n =1/n$, or
$n=1/epsilon_n lt dfrac{1}{(x^2+y^2)^{1/2}}.$
Note:
$(x^2+y^2)^{1/2} ge |x|$, and
$(x^2+y^2)^{1/2} ge |y|.$
Then
$dfrac{2}{(x^2+y^2)^{1/2}} le dfrac{1}{|x|}+dfrac{1}{|y|}.$
And finally :
$|(x^2+y^2)^{1/2}| lt delta_n$ implies
$2n =2/epsilon_n lt dfrac{2}{(x^2+y^2)^{1/2}} le $
$dfrac{1}{|x|} +dfrac{1}{|y|}.$
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038078%2ffind-existence-of-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
5
down vote
Note that
$$frac1{|x|}+frac1{|y|}ge frac1{|x|}to infty$$
add a comment |
up vote
5
down vote
Note that
$$frac1{|x|}+frac1{|y|}ge frac1{|x|}to infty$$
add a comment |
up vote
5
down vote
up vote
5
down vote
Note that
$$frac1{|x|}+frac1{|y|}ge frac1{|x|}to infty$$
Note that
$$frac1{|x|}+frac1{|y|}ge frac1{|x|}to infty$$
answered 3 hours ago
gimusi
91.9k84495
91.9k84495
add a comment |
add a comment |
up vote
2
down vote
Hint:
Use the fact that if $|(x,y)| < epsilon$, then $|x|<epsilon$ and $|y|<epsilon$
add a comment |
up vote
2
down vote
Hint:
Use the fact that if $|(x,y)| < epsilon$, then $|x|<epsilon$ and $|y|<epsilon$
add a comment |
up vote
2
down vote
up vote
2
down vote
Hint:
Use the fact that if $|(x,y)| < epsilon$, then $|x|<epsilon$ and $|y|<epsilon$
Hint:
Use the fact that if $|(x,y)| < epsilon$, then $|x|<epsilon$ and $|y|<epsilon$
answered 3 hours ago
5xum
89.4k393161
89.4k393161
add a comment |
add a comment |
up vote
2
down vote
Take the individual limits of each component. x and y are tending towards zero (the direction doesn't matter due to the magnitudes) so $frac{1}{|x|}$ and $frac{1}{|y|}$ both tend to infinity, and as a result so does their sum.
New contributor
You are right, but a few more words about why taking "individual limits of each component" can replace $(x,y)to (0,0)$ would be helpful in the present circumstance.
– hardmath
3 hours ago
add a comment |
up vote
2
down vote
Take the individual limits of each component. x and y are tending towards zero (the direction doesn't matter due to the magnitudes) so $frac{1}{|x|}$ and $frac{1}{|y|}$ both tend to infinity, and as a result so does their sum.
New contributor
You are right, but a few more words about why taking "individual limits of each component" can replace $(x,y)to (0,0)$ would be helpful in the present circumstance.
– hardmath
3 hours ago
add a comment |
up vote
2
down vote
up vote
2
down vote
Take the individual limits of each component. x and y are tending towards zero (the direction doesn't matter due to the magnitudes) so $frac{1}{|x|}$ and $frac{1}{|y|}$ both tend to infinity, and as a result so does their sum.
New contributor
Take the individual limits of each component. x and y are tending towards zero (the direction doesn't matter due to the magnitudes) so $frac{1}{|x|}$ and $frac{1}{|y|}$ both tend to infinity, and as a result so does their sum.
New contributor
New contributor
answered 3 hours ago
M.M.
212
212
New contributor
New contributor
You are right, but a few more words about why taking "individual limits of each component" can replace $(x,y)to (0,0)$ would be helpful in the present circumstance.
– hardmath
3 hours ago
add a comment |
You are right, but a few more words about why taking "individual limits of each component" can replace $(x,y)to (0,0)$ would be helpful in the present circumstance.
– hardmath
3 hours ago
You are right, but a few more words about why taking "individual limits of each component" can replace $(x,y)to (0,0)$ would be helpful in the present circumstance.
– hardmath
3 hours ago
You are right, but a few more words about why taking "individual limits of each component" can replace $(x,y)to (0,0)$ would be helpful in the present circumstance.
– hardmath
3 hours ago
add a comment |
up vote
0
down vote
We have:
$(x,y) rightarrow 0.$
Let $epsilon_n =1/n$, $n$ positive integer, be given.
Then $|(x^2+y^2)^{1/2}| < delta_n$ $(=epsilon_n)$ implies
$|(x^2+y^2)^{1/2}| < epsilon_n =1/n$, or
$n=1/epsilon_n lt dfrac{1}{(x^2+y^2)^{1/2}}.$
Note:
$(x^2+y^2)^{1/2} ge |x|$, and
$(x^2+y^2)^{1/2} ge |y|.$
Then
$dfrac{2}{(x^2+y^2)^{1/2}} le dfrac{1}{|x|}+dfrac{1}{|y|}.$
And finally :
$|(x^2+y^2)^{1/2}| lt delta_n$ implies
$2n =2/epsilon_n lt dfrac{2}{(x^2+y^2)^{1/2}} le $
$dfrac{1}{|x|} +dfrac{1}{|y|}.$
add a comment |
up vote
0
down vote
We have:
$(x,y) rightarrow 0.$
Let $epsilon_n =1/n$, $n$ positive integer, be given.
Then $|(x^2+y^2)^{1/2}| < delta_n$ $(=epsilon_n)$ implies
$|(x^2+y^2)^{1/2}| < epsilon_n =1/n$, or
$n=1/epsilon_n lt dfrac{1}{(x^2+y^2)^{1/2}}.$
Note:
$(x^2+y^2)^{1/2} ge |x|$, and
$(x^2+y^2)^{1/2} ge |y|.$
Then
$dfrac{2}{(x^2+y^2)^{1/2}} le dfrac{1}{|x|}+dfrac{1}{|y|}.$
And finally :
$|(x^2+y^2)^{1/2}| lt delta_n$ implies
$2n =2/epsilon_n lt dfrac{2}{(x^2+y^2)^{1/2}} le $
$dfrac{1}{|x|} +dfrac{1}{|y|}.$
add a comment |
up vote
0
down vote
up vote
0
down vote
We have:
$(x,y) rightarrow 0.$
Let $epsilon_n =1/n$, $n$ positive integer, be given.
Then $|(x^2+y^2)^{1/2}| < delta_n$ $(=epsilon_n)$ implies
$|(x^2+y^2)^{1/2}| < epsilon_n =1/n$, or
$n=1/epsilon_n lt dfrac{1}{(x^2+y^2)^{1/2}}.$
Note:
$(x^2+y^2)^{1/2} ge |x|$, and
$(x^2+y^2)^{1/2} ge |y|.$
Then
$dfrac{2}{(x^2+y^2)^{1/2}} le dfrac{1}{|x|}+dfrac{1}{|y|}.$
And finally :
$|(x^2+y^2)^{1/2}| lt delta_n$ implies
$2n =2/epsilon_n lt dfrac{2}{(x^2+y^2)^{1/2}} le $
$dfrac{1}{|x|} +dfrac{1}{|y|}.$
We have:
$(x,y) rightarrow 0.$
Let $epsilon_n =1/n$, $n$ positive integer, be given.
Then $|(x^2+y^2)^{1/2}| < delta_n$ $(=epsilon_n)$ implies
$|(x^2+y^2)^{1/2}| < epsilon_n =1/n$, or
$n=1/epsilon_n lt dfrac{1}{(x^2+y^2)^{1/2}}.$
Note:
$(x^2+y^2)^{1/2} ge |x|$, and
$(x^2+y^2)^{1/2} ge |y|.$
Then
$dfrac{2}{(x^2+y^2)^{1/2}} le dfrac{1}{|x|}+dfrac{1}{|y|}.$
And finally :
$|(x^2+y^2)^{1/2}| lt delta_n$ implies
$2n =2/epsilon_n lt dfrac{2}{(x^2+y^2)^{1/2}} le $
$dfrac{1}{|x|} +dfrac{1}{|y|}.$
edited 1 hour ago
answered 1 hour ago
Peter Szilas
10.5k2720
10.5k2720
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3038078%2ffind-existence-of-limit%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown