Can a cube of discontinuous function be continuous?












2














Can a cube (meaning $g(x) = f(x)^3 = f(x) cdot f(x) cdot f(x)$) of discontinuous function $f: D to mathbb{R}$ ($D$ is subset of $mathbb{R}$) be continuous? I think it can't, since $x^3$ is injective, but I am not able to prove it or find a counterexample.










share|cite|improve this question




















  • 3




    The point is not that $x longmapsto x^3$ is injective, as much as $x longmapsto x^{1/3}$ is continuous.
    – Mindlack
    2 hours ago










  • What is your domain? It matters really quite a lot.
    – user3482749
    2 hours ago












  • I think the injectivity is very much to the point. $f(x) =sqrt x$ is also continuous on $[0,∞)$ but there are any number of discontinuous functions $g$ on that interval with $g(x)cdot g(x)$ continuous.
    – MJD
    2 hours ago


















2














Can a cube (meaning $g(x) = f(x)^3 = f(x) cdot f(x) cdot f(x)$) of discontinuous function $f: D to mathbb{R}$ ($D$ is subset of $mathbb{R}$) be continuous? I think it can't, since $x^3$ is injective, but I am not able to prove it or find a counterexample.










share|cite|improve this question




















  • 3




    The point is not that $x longmapsto x^3$ is injective, as much as $x longmapsto x^{1/3}$ is continuous.
    – Mindlack
    2 hours ago










  • What is your domain? It matters really quite a lot.
    – user3482749
    2 hours ago












  • I think the injectivity is very much to the point. $f(x) =sqrt x$ is also continuous on $[0,∞)$ but there are any number of discontinuous functions $g$ on that interval with $g(x)cdot g(x)$ continuous.
    – MJD
    2 hours ago
















2












2








2


1





Can a cube (meaning $g(x) = f(x)^3 = f(x) cdot f(x) cdot f(x)$) of discontinuous function $f: D to mathbb{R}$ ($D$ is subset of $mathbb{R}$) be continuous? I think it can't, since $x^3$ is injective, but I am not able to prove it or find a counterexample.










share|cite|improve this question















Can a cube (meaning $g(x) = f(x)^3 = f(x) cdot f(x) cdot f(x)$) of discontinuous function $f: D to mathbb{R}$ ($D$ is subset of $mathbb{R}$) be continuous? I think it can't, since $x^3$ is injective, but I am not able to prove it or find a counterexample.







continuity






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 2 hours ago







J. Abraham

















asked 2 hours ago









J. AbrahamJ. Abraham

463314




463314








  • 3




    The point is not that $x longmapsto x^3$ is injective, as much as $x longmapsto x^{1/3}$ is continuous.
    – Mindlack
    2 hours ago










  • What is your domain? It matters really quite a lot.
    – user3482749
    2 hours ago












  • I think the injectivity is very much to the point. $f(x) =sqrt x$ is also continuous on $[0,∞)$ but there are any number of discontinuous functions $g$ on that interval with $g(x)cdot g(x)$ continuous.
    – MJD
    2 hours ago
















  • 3




    The point is not that $x longmapsto x^3$ is injective, as much as $x longmapsto x^{1/3}$ is continuous.
    – Mindlack
    2 hours ago










  • What is your domain? It matters really quite a lot.
    – user3482749
    2 hours ago












  • I think the injectivity is very much to the point. $f(x) =sqrt x$ is also continuous on $[0,∞)$ but there are any number of discontinuous functions $g$ on that interval with $g(x)cdot g(x)$ continuous.
    – MJD
    2 hours ago










3




3




The point is not that $x longmapsto x^3$ is injective, as much as $x longmapsto x^{1/3}$ is continuous.
– Mindlack
2 hours ago




The point is not that $x longmapsto x^3$ is injective, as much as $x longmapsto x^{1/3}$ is continuous.
– Mindlack
2 hours ago












What is your domain? It matters really quite a lot.
– user3482749
2 hours ago






What is your domain? It matters really quite a lot.
– user3482749
2 hours ago














I think the injectivity is very much to the point. $f(x) =sqrt x$ is also continuous on $[0,∞)$ but there are any number of discontinuous functions $g$ on that interval with $g(x)cdot g(x)$ continuous.
– MJD
2 hours ago






I think the injectivity is very much to the point. $f(x) =sqrt x$ is also continuous on $[0,∞)$ but there are any number of discontinuous functions $g$ on that interval with $g(x)cdot g(x)$ continuous.
– MJD
2 hours ago












1 Answer
1






active

oldest

votes


















9














Since $phi : mathbb{R} to mathbb{R}, phi(x) = x^3$, is a homeomorphism, you see that $f$ is continuous iff $phi circ f$ is continuous.






share|cite|improve this answer























    Your Answer





    StackExchange.ifUsing("editor", function () {
    return StackExchange.using("mathjaxEditing", function () {
    StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
    StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
    });
    });
    }, "mathjax-editing");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "69"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    autoActivateHeartbeat: false,
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    noCode: true, onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065701%2fcan-a-cube-of-discontinuous-function-be-continuous%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes









    9














    Since $phi : mathbb{R} to mathbb{R}, phi(x) = x^3$, is a homeomorphism, you see that $f$ is continuous iff $phi circ f$ is continuous.






    share|cite|improve this answer




























      9














      Since $phi : mathbb{R} to mathbb{R}, phi(x) = x^3$, is a homeomorphism, you see that $f$ is continuous iff $phi circ f$ is continuous.






      share|cite|improve this answer


























        9












        9








        9






        Since $phi : mathbb{R} to mathbb{R}, phi(x) = x^3$, is a homeomorphism, you see that $f$ is continuous iff $phi circ f$ is continuous.






        share|cite|improve this answer














        Since $phi : mathbb{R} to mathbb{R}, phi(x) = x^3$, is a homeomorphism, you see that $f$ is continuous iff $phi circ f$ is continuous.







        share|cite|improve this answer














        share|cite|improve this answer



        share|cite|improve this answer








        edited 2 hours ago

























        answered 2 hours ago









        Paul FrostPaul Frost

        9,5002631




        9,5002631






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Mathematics Stack Exchange!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            Use MathJax to format equations. MathJax reference.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3065701%2fcan-a-cube-of-discontinuous-function-be-continuous%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            What visual should I use to simply compare current year value vs last year in Power BI desktop

            How to ignore python UserWarning in pytest?

            Alexandru Averescu