Stepwise regression using p-values to drop variables with nonsignificant p-values
up vote
28
down vote
favorite
I want to perform a stepwise linear Regression using p-values as a selection criterion, e.g.: at each step dropping variables that have the highest i.e. the most insignificant p-values, stopping when all values are significant defined by some threshold alpha.
I am totally aware that I should use the AIC (e.g. command step or stepAIC) or some other criterion instead, but my boss has no grasp of statistics and insist on using p-values.
If necessary, I could program my own routine, but I am wondering if there is an already implemented version of this.
r statistics regression p-value
|
show 3 more comments
up vote
28
down vote
favorite
I want to perform a stepwise linear Regression using p-values as a selection criterion, e.g.: at each step dropping variables that have the highest i.e. the most insignificant p-values, stopping when all values are significant defined by some threshold alpha.
I am totally aware that I should use the AIC (e.g. command step or stepAIC) or some other criterion instead, but my boss has no grasp of statistics and insist on using p-values.
If necessary, I could program my own routine, but I am wondering if there is an already implemented version of this.
r statistics regression p-value
22
I hope your boss doesn't read stackoverflow. ;-)
– Joshua Ulrich
Sep 13 '10 at 14:06
4
You might consider asking this question on here: stats.stackexchange.com
– Shane
Sep 13 '10 at 15:40
8
Might be easier to teach you boss good stats than to get R to do bad stats.
– Richard Herron
Sep 13 '10 at 19:26
8
Just pick three variables at random - you'll probably do just as well step-wise regression.
– hadley
Sep 13 '10 at 21:37
7
Does your boss also tell his doctor what medicine to prescribe and his mechanic how to fix his car?
– Rob Hyndman
Sep 14 '10 at 1:51
|
show 3 more comments
up vote
28
down vote
favorite
up vote
28
down vote
favorite
I want to perform a stepwise linear Regression using p-values as a selection criterion, e.g.: at each step dropping variables that have the highest i.e. the most insignificant p-values, stopping when all values are significant defined by some threshold alpha.
I am totally aware that I should use the AIC (e.g. command step or stepAIC) or some other criterion instead, but my boss has no grasp of statistics and insist on using p-values.
If necessary, I could program my own routine, but I am wondering if there is an already implemented version of this.
r statistics regression p-value
I want to perform a stepwise linear Regression using p-values as a selection criterion, e.g.: at each step dropping variables that have the highest i.e. the most insignificant p-values, stopping when all values are significant defined by some threshold alpha.
I am totally aware that I should use the AIC (e.g. command step or stepAIC) or some other criterion instead, but my boss has no grasp of statistics and insist on using p-values.
If necessary, I could program my own routine, but I am wondering if there is an already implemented version of this.
r statistics regression p-value
r statistics regression p-value
edited Feb 12 at 10:29
zx8754
28.9k76395
28.9k76395
asked Sep 13 '10 at 14:05
DainisZ
175136
175136
22
I hope your boss doesn't read stackoverflow. ;-)
– Joshua Ulrich
Sep 13 '10 at 14:06
4
You might consider asking this question on here: stats.stackexchange.com
– Shane
Sep 13 '10 at 15:40
8
Might be easier to teach you boss good stats than to get R to do bad stats.
– Richard Herron
Sep 13 '10 at 19:26
8
Just pick three variables at random - you'll probably do just as well step-wise regression.
– hadley
Sep 13 '10 at 21:37
7
Does your boss also tell his doctor what medicine to prescribe and his mechanic how to fix his car?
– Rob Hyndman
Sep 14 '10 at 1:51
|
show 3 more comments
22
I hope your boss doesn't read stackoverflow. ;-)
– Joshua Ulrich
Sep 13 '10 at 14:06
4
You might consider asking this question on here: stats.stackexchange.com
– Shane
Sep 13 '10 at 15:40
8
Might be easier to teach you boss good stats than to get R to do bad stats.
– Richard Herron
Sep 13 '10 at 19:26
8
Just pick three variables at random - you'll probably do just as well step-wise regression.
– hadley
Sep 13 '10 at 21:37
7
Does your boss also tell his doctor what medicine to prescribe and his mechanic how to fix his car?
– Rob Hyndman
Sep 14 '10 at 1:51
22
22
I hope your boss doesn't read stackoverflow. ;-)
– Joshua Ulrich
Sep 13 '10 at 14:06
I hope your boss doesn't read stackoverflow. ;-)
– Joshua Ulrich
Sep 13 '10 at 14:06
4
4
You might consider asking this question on here: stats.stackexchange.com
– Shane
Sep 13 '10 at 15:40
You might consider asking this question on here: stats.stackexchange.com
– Shane
Sep 13 '10 at 15:40
8
8
Might be easier to teach you boss good stats than to get R to do bad stats.
– Richard Herron
Sep 13 '10 at 19:26
Might be easier to teach you boss good stats than to get R to do bad stats.
– Richard Herron
Sep 13 '10 at 19:26
8
8
Just pick three variables at random - you'll probably do just as well step-wise regression.
– hadley
Sep 13 '10 at 21:37
Just pick three variables at random - you'll probably do just as well step-wise regression.
– hadley
Sep 13 '10 at 21:37
7
7
Does your boss also tell his doctor what medicine to prescribe and his mechanic how to fix his car?
– Rob Hyndman
Sep 14 '10 at 1:51
Does your boss also tell his doctor what medicine to prescribe and his mechanic how to fix his car?
– Rob Hyndman
Sep 14 '10 at 1:51
|
show 3 more comments
6 Answers
6
active
oldest
votes
up vote
27
down vote
accepted
Show your boss the following :
set.seed(100)
x1 <- runif(100,0,1)
x2 <- as.factor(sample(letters[1:3],100,replace=T))
y <- x1+x1*(x2=="a")+2*(x2=="b")+rnorm(100)
summary(lm(y~x1*x2))
Which gives :
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1525 0.3066 -0.498 0.61995
x1 1.8693 0.6045 3.092 0.00261 **
x2b 2.5149 0.4334 5.802 8.77e-08 ***
x2c 0.3089 0.4475 0.690 0.49180
x1:x2b -1.1239 0.8022 -1.401 0.16451
x1:x2c -1.0497 0.7873 -1.333 0.18566
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Now, based on the p-values you would exclude which one? x2 is most significant and most non-significant at the same time.
Edit : To clarify : This exaxmple is not the best, as indicated in the comments. The procedure in Stata and SPSS is AFAIK also not based on the p-values of the T-test on the coefficients, but on the F-test after removal of one of the variables.
I have a function that does exactly that. This is a selection on "the p-value", but not of the T-test on the coefficients or on the anova results. Well, feel free to use it if it looks useful to you.
#####################################
# Automated model selection
# Author : Joris Meys
# version : 0.2
# date : 12/01/09
#####################################
#CHANGE LOG
# 0.2 : check for empty scopevar vector
#####################################
# Function has.interaction checks whether x is part of a term in terms
# terms is a vector with names of terms from a model
has.interaction <- function(x,terms){
out <- sapply(terms,function(i){
sum(1-(strsplit(x,":")[[1]] %in% strsplit(i,":")[[1]]))==0
})
return(sum(out)>0)
}
# Function Model.select
# model is the lm object of the full model
# keep is a list of model terms to keep in the model at all times
# sig gives the significance for removal of a variable. Can be 0.1 too (see SPSS)
# verbose=T gives the F-tests, dropped var and resulting model after
model.select <- function(model,keep,sig=0.05,verbose=F){
counter=1
# check input
if(!is(model,"lm")) stop(paste(deparse(substitute(model)),"is not an lm objectn"))
# calculate scope for drop1 function
terms <- attr(model$terms,"term.labels")
if(missing(keep)){ # set scopevars to all terms
scopevars <- terms
} else{ # select the scopevars if keep is used
index <- match(keep,terms)
# check if all is specified correctly
if(sum(is.na(index))>0){
novar <- keep[is.na(index)]
warning(paste(
c(novar,"cannot be found in the model",
"nThese terms are ignored in the model selection."),
collapse=" "))
index <- as.vector(na.omit(index))
}
scopevars <- terms[-index]
}
# Backward model selection :
while(T){
# extract the test statistics from drop.
test <- drop1(model, scope=scopevars,test="F")
if(verbose){
cat("-------------STEP ",counter,"-------------n",
"The drop statistics : n")
print(test)
}
pval <- test[,dim(test)[2]]
names(pval) <- rownames(test)
pval <- sort(pval,decreasing=T)
if(sum(is.na(pval))>0) stop(paste("Model",
deparse(substitute(model)),"is invalid. Check if all coefficients are estimated."))
# check if all significant
if(pval[1]<sig) break # stops the loop if all remaining vars are sign.
# select var to drop
i=1
while(T){
dropvar <- names(pval)[i]
check.terms <- terms[-match(dropvar,terms)]
x <- has.interaction(dropvar,check.terms)
if(x){i=i+1;next} else {break}
} # end while(T) drop var
if(pval[i]<sig) break # stops the loop if var to remove is significant
if(verbose){
cat("n--------nTerm dropped in step",counter,":",dropvar,"n--------nn")
}
#update terms, scopevars and model
scopevars <- scopevars[-match(dropvar,scopevars)]
terms <- terms[-match(dropvar,terms)]
formul <- as.formula(paste(".~.-",dropvar))
model <- update(model,formul)
if(length(scopevars)==0) {
warning("All variables are thrown out of the model.n",
"No model could be specified.")
return()
}
counter=counter+1
} # end while(T) main loop
return(model)
}
Nice example - I could have used this a couple of months ago!
– Matt Parker
Sep 13 '10 at 15:43
I think it's obvious the decision is not based exclusively on the p-values. You start by removing the least significant highest-order interactions and then the potential quadratic terms, before considering any explanatory variables for removal.
– George Dontas
Sep 13 '10 at 15:56
off course it isn't. But remove the interaction term and you'll see the situation remains the same. So you should actually go to an anova, but then you run into the problem of which type. And that's a can of worms I'm not going to open.
– Joris Meys
Sep 13 '10 at 15:59
No chance argueing with the boss on a level that suffisticated about statistics ;-) Nevertheless I'll try and will do the stepwise selection "by hand" untill then. It's just weird that there isn't a R function for that, even when the approach using p-values comes from the time when there were too high computational costs of computiong the AIC ...
– DainisZ
Sep 13 '10 at 16:00
1
I know, it's far from the best example. It was just to bring a point across. In any case, the "p-value based" method is based on an F-test, not on the t-test of the coefficients. So the function I added should give the OP what he wants.
– Joris Meys
Sep 13 '10 at 16:56
|
show 3 more comments
up vote
17
down vote
Why not try using the step()
function specifying your testing method?
For example, for backward elimination, you type only a command:
step(FullModel, direction = "backward", test = "F")
and for stepwise selection, simply:
step(FullModel, direction = "both", test = "F")
This can display both the AIC values as well as the F and P values.
1
Note that this procedure will add/remove the variable with the most significant test value. But the choice to continue or stop remains based on AIC. I don't think it is possible to stop the procedure once there are no significant variables (like the OP wants).
– Davor Josipovic
Dec 5 '16 at 16:10
add a comment |
up vote
10
down vote
Here is an example. Start with the most complicated model: this includes interactions between all three explanatory variables.
model1 <-lm (ozone~temp*wind*rad)
summary(model1)
Coefficients:
Estimate Std.Error t value Pr(>t)
(Intercept) 5.683e+02 2.073e+02 2.741 0.00725 **
temp -1.076e+01 4.303e+00 -2.501 0.01401 *
wind -3.237e+01 1.173e+01 -2.760 0.00687 **
rad -3.117e-01 5.585e-01 -0.558 0.57799
temp:wind 2.377e-01 1.367e-01 1.739 0.08519
temp:rad 8.402e-03 7.512e-03 1.119 0.26602
wind:rad 2.054e-02 4.892e-02 0.420 0.47552
temp:wind:rad -4.324e-04 6.595e-04 -0.656 0.51358
The three-way interaction is clearly not significant. This is how you remove it, to begin the process of model simplification:
model2 <- update(model1,~. - temp:wind:rad)
summary(model2)
Depending on the results, you can continue simplifying your model:
model3 <- update(model2,~. - temp:rad)
summary(model3)
...
Alternatively you can use the automatic model simplification function step
, to see
how well it does:
model_step <- step(model1)
1
Thanks for your answer. I just realized that I did not state my question clearlly enough: I am looking for a command or package that does this automatically, using the p-value as a criterion. The command "step" uses the AIC. I could also do it by "hand" as you suggets or programm some routine that does this automatically, but an already implemented version would come in very handy.
– DainisZ
Sep 13 '10 at 15:03
add a comment |
up vote
7
down vote
If you are just trying to get the best predictive model, then perhaps it doesn't matter too much, but for anything else, don't bother with this sort of model selection. It is wrong.
Use a shrinkage methods such as ridge regression (in lm.ridge()
in package MASS for example), or the lasso, or the elasticnet (a combination of ridge and lasso constraints). Of these, only the lasso and elastic net will do some form of model selection, i.e. force the coefficients of some covariates to zero.
See the Regularization and Shrinkage section of the Machine Learning task view on CRAN.
add a comment |
up vote
7
down vote
Package rms: Regression Modeling Strategies has fastbw()
that does exactly what you need. There is even a parameter to flip from AIC to p-value based elimination.
add a comment |
up vote
0
down vote
As mentioned by Gavin Simpson the function fastbw
from rms
package can be used to select variables using the p-value. Bellow is an example using the example given by George Dontas. Use the option rule='p'
to select p-value criteria.
require(rms)
model1 <- ols(Ozone ~ Temp * Wind * Solar.R, data=airquality)
model2 <- fastbw(fit=model1, rule="p", sls=0.05)
model2
In the text, you meant the rms package. There is also an rsm package, so this could cause confusion.
– rvl
Nov 23 at 19:47
Thanks rvl for the clarification. I fixed it.
– fhernanb
Nov 23 at 20:11
add a comment |
6 Answers
6
active
oldest
votes
6 Answers
6
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
27
down vote
accepted
Show your boss the following :
set.seed(100)
x1 <- runif(100,0,1)
x2 <- as.factor(sample(letters[1:3],100,replace=T))
y <- x1+x1*(x2=="a")+2*(x2=="b")+rnorm(100)
summary(lm(y~x1*x2))
Which gives :
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1525 0.3066 -0.498 0.61995
x1 1.8693 0.6045 3.092 0.00261 **
x2b 2.5149 0.4334 5.802 8.77e-08 ***
x2c 0.3089 0.4475 0.690 0.49180
x1:x2b -1.1239 0.8022 -1.401 0.16451
x1:x2c -1.0497 0.7873 -1.333 0.18566
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Now, based on the p-values you would exclude which one? x2 is most significant and most non-significant at the same time.
Edit : To clarify : This exaxmple is not the best, as indicated in the comments. The procedure in Stata and SPSS is AFAIK also not based on the p-values of the T-test on the coefficients, but on the F-test after removal of one of the variables.
I have a function that does exactly that. This is a selection on "the p-value", but not of the T-test on the coefficients or on the anova results. Well, feel free to use it if it looks useful to you.
#####################################
# Automated model selection
# Author : Joris Meys
# version : 0.2
# date : 12/01/09
#####################################
#CHANGE LOG
# 0.2 : check for empty scopevar vector
#####################################
# Function has.interaction checks whether x is part of a term in terms
# terms is a vector with names of terms from a model
has.interaction <- function(x,terms){
out <- sapply(terms,function(i){
sum(1-(strsplit(x,":")[[1]] %in% strsplit(i,":")[[1]]))==0
})
return(sum(out)>0)
}
# Function Model.select
# model is the lm object of the full model
# keep is a list of model terms to keep in the model at all times
# sig gives the significance for removal of a variable. Can be 0.1 too (see SPSS)
# verbose=T gives the F-tests, dropped var and resulting model after
model.select <- function(model,keep,sig=0.05,verbose=F){
counter=1
# check input
if(!is(model,"lm")) stop(paste(deparse(substitute(model)),"is not an lm objectn"))
# calculate scope for drop1 function
terms <- attr(model$terms,"term.labels")
if(missing(keep)){ # set scopevars to all terms
scopevars <- terms
} else{ # select the scopevars if keep is used
index <- match(keep,terms)
# check if all is specified correctly
if(sum(is.na(index))>0){
novar <- keep[is.na(index)]
warning(paste(
c(novar,"cannot be found in the model",
"nThese terms are ignored in the model selection."),
collapse=" "))
index <- as.vector(na.omit(index))
}
scopevars <- terms[-index]
}
# Backward model selection :
while(T){
# extract the test statistics from drop.
test <- drop1(model, scope=scopevars,test="F")
if(verbose){
cat("-------------STEP ",counter,"-------------n",
"The drop statistics : n")
print(test)
}
pval <- test[,dim(test)[2]]
names(pval) <- rownames(test)
pval <- sort(pval,decreasing=T)
if(sum(is.na(pval))>0) stop(paste("Model",
deparse(substitute(model)),"is invalid. Check if all coefficients are estimated."))
# check if all significant
if(pval[1]<sig) break # stops the loop if all remaining vars are sign.
# select var to drop
i=1
while(T){
dropvar <- names(pval)[i]
check.terms <- terms[-match(dropvar,terms)]
x <- has.interaction(dropvar,check.terms)
if(x){i=i+1;next} else {break}
} # end while(T) drop var
if(pval[i]<sig) break # stops the loop if var to remove is significant
if(verbose){
cat("n--------nTerm dropped in step",counter,":",dropvar,"n--------nn")
}
#update terms, scopevars and model
scopevars <- scopevars[-match(dropvar,scopevars)]
terms <- terms[-match(dropvar,terms)]
formul <- as.formula(paste(".~.-",dropvar))
model <- update(model,formul)
if(length(scopevars)==0) {
warning("All variables are thrown out of the model.n",
"No model could be specified.")
return()
}
counter=counter+1
} # end while(T) main loop
return(model)
}
Nice example - I could have used this a couple of months ago!
– Matt Parker
Sep 13 '10 at 15:43
I think it's obvious the decision is not based exclusively on the p-values. You start by removing the least significant highest-order interactions and then the potential quadratic terms, before considering any explanatory variables for removal.
– George Dontas
Sep 13 '10 at 15:56
off course it isn't. But remove the interaction term and you'll see the situation remains the same. So you should actually go to an anova, but then you run into the problem of which type. And that's a can of worms I'm not going to open.
– Joris Meys
Sep 13 '10 at 15:59
No chance argueing with the boss on a level that suffisticated about statistics ;-) Nevertheless I'll try and will do the stepwise selection "by hand" untill then. It's just weird that there isn't a R function for that, even when the approach using p-values comes from the time when there were too high computational costs of computiong the AIC ...
– DainisZ
Sep 13 '10 at 16:00
1
I know, it's far from the best example. It was just to bring a point across. In any case, the "p-value based" method is based on an F-test, not on the t-test of the coefficients. So the function I added should give the OP what he wants.
– Joris Meys
Sep 13 '10 at 16:56
|
show 3 more comments
up vote
27
down vote
accepted
Show your boss the following :
set.seed(100)
x1 <- runif(100,0,1)
x2 <- as.factor(sample(letters[1:3],100,replace=T))
y <- x1+x1*(x2=="a")+2*(x2=="b")+rnorm(100)
summary(lm(y~x1*x2))
Which gives :
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1525 0.3066 -0.498 0.61995
x1 1.8693 0.6045 3.092 0.00261 **
x2b 2.5149 0.4334 5.802 8.77e-08 ***
x2c 0.3089 0.4475 0.690 0.49180
x1:x2b -1.1239 0.8022 -1.401 0.16451
x1:x2c -1.0497 0.7873 -1.333 0.18566
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Now, based on the p-values you would exclude which one? x2 is most significant and most non-significant at the same time.
Edit : To clarify : This exaxmple is not the best, as indicated in the comments. The procedure in Stata and SPSS is AFAIK also not based on the p-values of the T-test on the coefficients, but on the F-test after removal of one of the variables.
I have a function that does exactly that. This is a selection on "the p-value", but not of the T-test on the coefficients or on the anova results. Well, feel free to use it if it looks useful to you.
#####################################
# Automated model selection
# Author : Joris Meys
# version : 0.2
# date : 12/01/09
#####################################
#CHANGE LOG
# 0.2 : check for empty scopevar vector
#####################################
# Function has.interaction checks whether x is part of a term in terms
# terms is a vector with names of terms from a model
has.interaction <- function(x,terms){
out <- sapply(terms,function(i){
sum(1-(strsplit(x,":")[[1]] %in% strsplit(i,":")[[1]]))==0
})
return(sum(out)>0)
}
# Function Model.select
# model is the lm object of the full model
# keep is a list of model terms to keep in the model at all times
# sig gives the significance for removal of a variable. Can be 0.1 too (see SPSS)
# verbose=T gives the F-tests, dropped var and resulting model after
model.select <- function(model,keep,sig=0.05,verbose=F){
counter=1
# check input
if(!is(model,"lm")) stop(paste(deparse(substitute(model)),"is not an lm objectn"))
# calculate scope for drop1 function
terms <- attr(model$terms,"term.labels")
if(missing(keep)){ # set scopevars to all terms
scopevars <- terms
} else{ # select the scopevars if keep is used
index <- match(keep,terms)
# check if all is specified correctly
if(sum(is.na(index))>0){
novar <- keep[is.na(index)]
warning(paste(
c(novar,"cannot be found in the model",
"nThese terms are ignored in the model selection."),
collapse=" "))
index <- as.vector(na.omit(index))
}
scopevars <- terms[-index]
}
# Backward model selection :
while(T){
# extract the test statistics from drop.
test <- drop1(model, scope=scopevars,test="F")
if(verbose){
cat("-------------STEP ",counter,"-------------n",
"The drop statistics : n")
print(test)
}
pval <- test[,dim(test)[2]]
names(pval) <- rownames(test)
pval <- sort(pval,decreasing=T)
if(sum(is.na(pval))>0) stop(paste("Model",
deparse(substitute(model)),"is invalid. Check if all coefficients are estimated."))
# check if all significant
if(pval[1]<sig) break # stops the loop if all remaining vars are sign.
# select var to drop
i=1
while(T){
dropvar <- names(pval)[i]
check.terms <- terms[-match(dropvar,terms)]
x <- has.interaction(dropvar,check.terms)
if(x){i=i+1;next} else {break}
} # end while(T) drop var
if(pval[i]<sig) break # stops the loop if var to remove is significant
if(verbose){
cat("n--------nTerm dropped in step",counter,":",dropvar,"n--------nn")
}
#update terms, scopevars and model
scopevars <- scopevars[-match(dropvar,scopevars)]
terms <- terms[-match(dropvar,terms)]
formul <- as.formula(paste(".~.-",dropvar))
model <- update(model,formul)
if(length(scopevars)==0) {
warning("All variables are thrown out of the model.n",
"No model could be specified.")
return()
}
counter=counter+1
} # end while(T) main loop
return(model)
}
Nice example - I could have used this a couple of months ago!
– Matt Parker
Sep 13 '10 at 15:43
I think it's obvious the decision is not based exclusively on the p-values. You start by removing the least significant highest-order interactions and then the potential quadratic terms, before considering any explanatory variables for removal.
– George Dontas
Sep 13 '10 at 15:56
off course it isn't. But remove the interaction term and you'll see the situation remains the same. So you should actually go to an anova, but then you run into the problem of which type. And that's a can of worms I'm not going to open.
– Joris Meys
Sep 13 '10 at 15:59
No chance argueing with the boss on a level that suffisticated about statistics ;-) Nevertheless I'll try and will do the stepwise selection "by hand" untill then. It's just weird that there isn't a R function for that, even when the approach using p-values comes from the time when there were too high computational costs of computiong the AIC ...
– DainisZ
Sep 13 '10 at 16:00
1
I know, it's far from the best example. It was just to bring a point across. In any case, the "p-value based" method is based on an F-test, not on the t-test of the coefficients. So the function I added should give the OP what he wants.
– Joris Meys
Sep 13 '10 at 16:56
|
show 3 more comments
up vote
27
down vote
accepted
up vote
27
down vote
accepted
Show your boss the following :
set.seed(100)
x1 <- runif(100,0,1)
x2 <- as.factor(sample(letters[1:3],100,replace=T))
y <- x1+x1*(x2=="a")+2*(x2=="b")+rnorm(100)
summary(lm(y~x1*x2))
Which gives :
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1525 0.3066 -0.498 0.61995
x1 1.8693 0.6045 3.092 0.00261 **
x2b 2.5149 0.4334 5.802 8.77e-08 ***
x2c 0.3089 0.4475 0.690 0.49180
x1:x2b -1.1239 0.8022 -1.401 0.16451
x1:x2c -1.0497 0.7873 -1.333 0.18566
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Now, based on the p-values you would exclude which one? x2 is most significant and most non-significant at the same time.
Edit : To clarify : This exaxmple is not the best, as indicated in the comments. The procedure in Stata and SPSS is AFAIK also not based on the p-values of the T-test on the coefficients, but on the F-test after removal of one of the variables.
I have a function that does exactly that. This is a selection on "the p-value", but not of the T-test on the coefficients or on the anova results. Well, feel free to use it if it looks useful to you.
#####################################
# Automated model selection
# Author : Joris Meys
# version : 0.2
# date : 12/01/09
#####################################
#CHANGE LOG
# 0.2 : check for empty scopevar vector
#####################################
# Function has.interaction checks whether x is part of a term in terms
# terms is a vector with names of terms from a model
has.interaction <- function(x,terms){
out <- sapply(terms,function(i){
sum(1-(strsplit(x,":")[[1]] %in% strsplit(i,":")[[1]]))==0
})
return(sum(out)>0)
}
# Function Model.select
# model is the lm object of the full model
# keep is a list of model terms to keep in the model at all times
# sig gives the significance for removal of a variable. Can be 0.1 too (see SPSS)
# verbose=T gives the F-tests, dropped var and resulting model after
model.select <- function(model,keep,sig=0.05,verbose=F){
counter=1
# check input
if(!is(model,"lm")) stop(paste(deparse(substitute(model)),"is not an lm objectn"))
# calculate scope for drop1 function
terms <- attr(model$terms,"term.labels")
if(missing(keep)){ # set scopevars to all terms
scopevars <- terms
} else{ # select the scopevars if keep is used
index <- match(keep,terms)
# check if all is specified correctly
if(sum(is.na(index))>0){
novar <- keep[is.na(index)]
warning(paste(
c(novar,"cannot be found in the model",
"nThese terms are ignored in the model selection."),
collapse=" "))
index <- as.vector(na.omit(index))
}
scopevars <- terms[-index]
}
# Backward model selection :
while(T){
# extract the test statistics from drop.
test <- drop1(model, scope=scopevars,test="F")
if(verbose){
cat("-------------STEP ",counter,"-------------n",
"The drop statistics : n")
print(test)
}
pval <- test[,dim(test)[2]]
names(pval) <- rownames(test)
pval <- sort(pval,decreasing=T)
if(sum(is.na(pval))>0) stop(paste("Model",
deparse(substitute(model)),"is invalid. Check if all coefficients are estimated."))
# check if all significant
if(pval[1]<sig) break # stops the loop if all remaining vars are sign.
# select var to drop
i=1
while(T){
dropvar <- names(pval)[i]
check.terms <- terms[-match(dropvar,terms)]
x <- has.interaction(dropvar,check.terms)
if(x){i=i+1;next} else {break}
} # end while(T) drop var
if(pval[i]<sig) break # stops the loop if var to remove is significant
if(verbose){
cat("n--------nTerm dropped in step",counter,":",dropvar,"n--------nn")
}
#update terms, scopevars and model
scopevars <- scopevars[-match(dropvar,scopevars)]
terms <- terms[-match(dropvar,terms)]
formul <- as.formula(paste(".~.-",dropvar))
model <- update(model,formul)
if(length(scopevars)==0) {
warning("All variables are thrown out of the model.n",
"No model could be specified.")
return()
}
counter=counter+1
} # end while(T) main loop
return(model)
}
Show your boss the following :
set.seed(100)
x1 <- runif(100,0,1)
x2 <- as.factor(sample(letters[1:3],100,replace=T))
y <- x1+x1*(x2=="a")+2*(x2=="b")+rnorm(100)
summary(lm(y~x1*x2))
Which gives :
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.1525 0.3066 -0.498 0.61995
x1 1.8693 0.6045 3.092 0.00261 **
x2b 2.5149 0.4334 5.802 8.77e-08 ***
x2c 0.3089 0.4475 0.690 0.49180
x1:x2b -1.1239 0.8022 -1.401 0.16451
x1:x2c -1.0497 0.7873 -1.333 0.18566
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Now, based on the p-values you would exclude which one? x2 is most significant and most non-significant at the same time.
Edit : To clarify : This exaxmple is not the best, as indicated in the comments. The procedure in Stata and SPSS is AFAIK also not based on the p-values of the T-test on the coefficients, but on the F-test after removal of one of the variables.
I have a function that does exactly that. This is a selection on "the p-value", but not of the T-test on the coefficients or on the anova results. Well, feel free to use it if it looks useful to you.
#####################################
# Automated model selection
# Author : Joris Meys
# version : 0.2
# date : 12/01/09
#####################################
#CHANGE LOG
# 0.2 : check for empty scopevar vector
#####################################
# Function has.interaction checks whether x is part of a term in terms
# terms is a vector with names of terms from a model
has.interaction <- function(x,terms){
out <- sapply(terms,function(i){
sum(1-(strsplit(x,":")[[1]] %in% strsplit(i,":")[[1]]))==0
})
return(sum(out)>0)
}
# Function Model.select
# model is the lm object of the full model
# keep is a list of model terms to keep in the model at all times
# sig gives the significance for removal of a variable. Can be 0.1 too (see SPSS)
# verbose=T gives the F-tests, dropped var and resulting model after
model.select <- function(model,keep,sig=0.05,verbose=F){
counter=1
# check input
if(!is(model,"lm")) stop(paste(deparse(substitute(model)),"is not an lm objectn"))
# calculate scope for drop1 function
terms <- attr(model$terms,"term.labels")
if(missing(keep)){ # set scopevars to all terms
scopevars <- terms
} else{ # select the scopevars if keep is used
index <- match(keep,terms)
# check if all is specified correctly
if(sum(is.na(index))>0){
novar <- keep[is.na(index)]
warning(paste(
c(novar,"cannot be found in the model",
"nThese terms are ignored in the model selection."),
collapse=" "))
index <- as.vector(na.omit(index))
}
scopevars <- terms[-index]
}
# Backward model selection :
while(T){
# extract the test statistics from drop.
test <- drop1(model, scope=scopevars,test="F")
if(verbose){
cat("-------------STEP ",counter,"-------------n",
"The drop statistics : n")
print(test)
}
pval <- test[,dim(test)[2]]
names(pval) <- rownames(test)
pval <- sort(pval,decreasing=T)
if(sum(is.na(pval))>0) stop(paste("Model",
deparse(substitute(model)),"is invalid. Check if all coefficients are estimated."))
# check if all significant
if(pval[1]<sig) break # stops the loop if all remaining vars are sign.
# select var to drop
i=1
while(T){
dropvar <- names(pval)[i]
check.terms <- terms[-match(dropvar,terms)]
x <- has.interaction(dropvar,check.terms)
if(x){i=i+1;next} else {break}
} # end while(T) drop var
if(pval[i]<sig) break # stops the loop if var to remove is significant
if(verbose){
cat("n--------nTerm dropped in step",counter,":",dropvar,"n--------nn")
}
#update terms, scopevars and model
scopevars <- scopevars[-match(dropvar,scopevars)]
terms <- terms[-match(dropvar,terms)]
formul <- as.formula(paste(".~.-",dropvar))
model <- update(model,formul)
if(length(scopevars)==0) {
warning("All variables are thrown out of the model.n",
"No model could be specified.")
return()
}
counter=counter+1
} # end while(T) main loop
return(model)
}
edited Sep 13 '10 at 23:57
answered Sep 13 '10 at 15:32
Joris Meys
79.3k24179236
79.3k24179236
Nice example - I could have used this a couple of months ago!
– Matt Parker
Sep 13 '10 at 15:43
I think it's obvious the decision is not based exclusively on the p-values. You start by removing the least significant highest-order interactions and then the potential quadratic terms, before considering any explanatory variables for removal.
– George Dontas
Sep 13 '10 at 15:56
off course it isn't. But remove the interaction term and you'll see the situation remains the same. So you should actually go to an anova, but then you run into the problem of which type. And that's a can of worms I'm not going to open.
– Joris Meys
Sep 13 '10 at 15:59
No chance argueing with the boss on a level that suffisticated about statistics ;-) Nevertheless I'll try and will do the stepwise selection "by hand" untill then. It's just weird that there isn't a R function for that, even when the approach using p-values comes from the time when there were too high computational costs of computiong the AIC ...
– DainisZ
Sep 13 '10 at 16:00
1
I know, it's far from the best example. It was just to bring a point across. In any case, the "p-value based" method is based on an F-test, not on the t-test of the coefficients. So the function I added should give the OP what he wants.
– Joris Meys
Sep 13 '10 at 16:56
|
show 3 more comments
Nice example - I could have used this a couple of months ago!
– Matt Parker
Sep 13 '10 at 15:43
I think it's obvious the decision is not based exclusively on the p-values. You start by removing the least significant highest-order interactions and then the potential quadratic terms, before considering any explanatory variables for removal.
– George Dontas
Sep 13 '10 at 15:56
off course it isn't. But remove the interaction term and you'll see the situation remains the same. So you should actually go to an anova, but then you run into the problem of which type. And that's a can of worms I'm not going to open.
– Joris Meys
Sep 13 '10 at 15:59
No chance argueing with the boss on a level that suffisticated about statistics ;-) Nevertheless I'll try and will do the stepwise selection "by hand" untill then. It's just weird that there isn't a R function for that, even when the approach using p-values comes from the time when there were too high computational costs of computiong the AIC ...
– DainisZ
Sep 13 '10 at 16:00
1
I know, it's far from the best example. It was just to bring a point across. In any case, the "p-value based" method is based on an F-test, not on the t-test of the coefficients. So the function I added should give the OP what he wants.
– Joris Meys
Sep 13 '10 at 16:56
Nice example - I could have used this a couple of months ago!
– Matt Parker
Sep 13 '10 at 15:43
Nice example - I could have used this a couple of months ago!
– Matt Parker
Sep 13 '10 at 15:43
I think it's obvious the decision is not based exclusively on the p-values. You start by removing the least significant highest-order interactions and then the potential quadratic terms, before considering any explanatory variables for removal.
– George Dontas
Sep 13 '10 at 15:56
I think it's obvious the decision is not based exclusively on the p-values. You start by removing the least significant highest-order interactions and then the potential quadratic terms, before considering any explanatory variables for removal.
– George Dontas
Sep 13 '10 at 15:56
off course it isn't. But remove the interaction term and you'll see the situation remains the same. So you should actually go to an anova, but then you run into the problem of which type. And that's a can of worms I'm not going to open.
– Joris Meys
Sep 13 '10 at 15:59
off course it isn't. But remove the interaction term and you'll see the situation remains the same. So you should actually go to an anova, but then you run into the problem of which type. And that's a can of worms I'm not going to open.
– Joris Meys
Sep 13 '10 at 15:59
No chance argueing with the boss on a level that suffisticated about statistics ;-) Nevertheless I'll try and will do the stepwise selection "by hand" untill then. It's just weird that there isn't a R function for that, even when the approach using p-values comes from the time when there were too high computational costs of computiong the AIC ...
– DainisZ
Sep 13 '10 at 16:00
No chance argueing with the boss on a level that suffisticated about statistics ;-) Nevertheless I'll try and will do the stepwise selection "by hand" untill then. It's just weird that there isn't a R function for that, even when the approach using p-values comes from the time when there were too high computational costs of computiong the AIC ...
– DainisZ
Sep 13 '10 at 16:00
1
1
I know, it's far from the best example. It was just to bring a point across. In any case, the "p-value based" method is based on an F-test, not on the t-test of the coefficients. So the function I added should give the OP what he wants.
– Joris Meys
Sep 13 '10 at 16:56
I know, it's far from the best example. It was just to bring a point across. In any case, the "p-value based" method is based on an F-test, not on the t-test of the coefficients. So the function I added should give the OP what he wants.
– Joris Meys
Sep 13 '10 at 16:56
|
show 3 more comments
up vote
17
down vote
Why not try using the step()
function specifying your testing method?
For example, for backward elimination, you type only a command:
step(FullModel, direction = "backward", test = "F")
and for stepwise selection, simply:
step(FullModel, direction = "both", test = "F")
This can display both the AIC values as well as the F and P values.
1
Note that this procedure will add/remove the variable with the most significant test value. But the choice to continue or stop remains based on AIC. I don't think it is possible to stop the procedure once there are no significant variables (like the OP wants).
– Davor Josipovic
Dec 5 '16 at 16:10
add a comment |
up vote
17
down vote
Why not try using the step()
function specifying your testing method?
For example, for backward elimination, you type only a command:
step(FullModel, direction = "backward", test = "F")
and for stepwise selection, simply:
step(FullModel, direction = "both", test = "F")
This can display both the AIC values as well as the F and P values.
1
Note that this procedure will add/remove the variable with the most significant test value. But the choice to continue or stop remains based on AIC. I don't think it is possible to stop the procedure once there are no significant variables (like the OP wants).
– Davor Josipovic
Dec 5 '16 at 16:10
add a comment |
up vote
17
down vote
up vote
17
down vote
Why not try using the step()
function specifying your testing method?
For example, for backward elimination, you type only a command:
step(FullModel, direction = "backward", test = "F")
and for stepwise selection, simply:
step(FullModel, direction = "both", test = "F")
This can display both the AIC values as well as the F and P values.
Why not try using the step()
function specifying your testing method?
For example, for backward elimination, you type only a command:
step(FullModel, direction = "backward", test = "F")
and for stepwise selection, simply:
step(FullModel, direction = "both", test = "F")
This can display both the AIC values as well as the F and P values.
edited Feb 12 at 10:36
Jaap
54.6k20116129
54.6k20116129
answered Jun 14 '12 at 3:37
leonie
17112
17112
1
Note that this procedure will add/remove the variable with the most significant test value. But the choice to continue or stop remains based on AIC. I don't think it is possible to stop the procedure once there are no significant variables (like the OP wants).
– Davor Josipovic
Dec 5 '16 at 16:10
add a comment |
1
Note that this procedure will add/remove the variable with the most significant test value. But the choice to continue or stop remains based on AIC. I don't think it is possible to stop the procedure once there are no significant variables (like the OP wants).
– Davor Josipovic
Dec 5 '16 at 16:10
1
1
Note that this procedure will add/remove the variable with the most significant test value. But the choice to continue or stop remains based on AIC. I don't think it is possible to stop the procedure once there are no significant variables (like the OP wants).
– Davor Josipovic
Dec 5 '16 at 16:10
Note that this procedure will add/remove the variable with the most significant test value. But the choice to continue or stop remains based on AIC. I don't think it is possible to stop the procedure once there are no significant variables (like the OP wants).
– Davor Josipovic
Dec 5 '16 at 16:10
add a comment |
up vote
10
down vote
Here is an example. Start with the most complicated model: this includes interactions between all three explanatory variables.
model1 <-lm (ozone~temp*wind*rad)
summary(model1)
Coefficients:
Estimate Std.Error t value Pr(>t)
(Intercept) 5.683e+02 2.073e+02 2.741 0.00725 **
temp -1.076e+01 4.303e+00 -2.501 0.01401 *
wind -3.237e+01 1.173e+01 -2.760 0.00687 **
rad -3.117e-01 5.585e-01 -0.558 0.57799
temp:wind 2.377e-01 1.367e-01 1.739 0.08519
temp:rad 8.402e-03 7.512e-03 1.119 0.26602
wind:rad 2.054e-02 4.892e-02 0.420 0.47552
temp:wind:rad -4.324e-04 6.595e-04 -0.656 0.51358
The three-way interaction is clearly not significant. This is how you remove it, to begin the process of model simplification:
model2 <- update(model1,~. - temp:wind:rad)
summary(model2)
Depending on the results, you can continue simplifying your model:
model3 <- update(model2,~. - temp:rad)
summary(model3)
...
Alternatively you can use the automatic model simplification function step
, to see
how well it does:
model_step <- step(model1)
1
Thanks for your answer. I just realized that I did not state my question clearlly enough: I am looking for a command or package that does this automatically, using the p-value as a criterion. The command "step" uses the AIC. I could also do it by "hand" as you suggets or programm some routine that does this automatically, but an already implemented version would come in very handy.
– DainisZ
Sep 13 '10 at 15:03
add a comment |
up vote
10
down vote
Here is an example. Start with the most complicated model: this includes interactions between all three explanatory variables.
model1 <-lm (ozone~temp*wind*rad)
summary(model1)
Coefficients:
Estimate Std.Error t value Pr(>t)
(Intercept) 5.683e+02 2.073e+02 2.741 0.00725 **
temp -1.076e+01 4.303e+00 -2.501 0.01401 *
wind -3.237e+01 1.173e+01 -2.760 0.00687 **
rad -3.117e-01 5.585e-01 -0.558 0.57799
temp:wind 2.377e-01 1.367e-01 1.739 0.08519
temp:rad 8.402e-03 7.512e-03 1.119 0.26602
wind:rad 2.054e-02 4.892e-02 0.420 0.47552
temp:wind:rad -4.324e-04 6.595e-04 -0.656 0.51358
The three-way interaction is clearly not significant. This is how you remove it, to begin the process of model simplification:
model2 <- update(model1,~. - temp:wind:rad)
summary(model2)
Depending on the results, you can continue simplifying your model:
model3 <- update(model2,~. - temp:rad)
summary(model3)
...
Alternatively you can use the automatic model simplification function step
, to see
how well it does:
model_step <- step(model1)
1
Thanks for your answer. I just realized that I did not state my question clearlly enough: I am looking for a command or package that does this automatically, using the p-value as a criterion. The command "step" uses the AIC. I could also do it by "hand" as you suggets or programm some routine that does this automatically, but an already implemented version would come in very handy.
– DainisZ
Sep 13 '10 at 15:03
add a comment |
up vote
10
down vote
up vote
10
down vote
Here is an example. Start with the most complicated model: this includes interactions between all three explanatory variables.
model1 <-lm (ozone~temp*wind*rad)
summary(model1)
Coefficients:
Estimate Std.Error t value Pr(>t)
(Intercept) 5.683e+02 2.073e+02 2.741 0.00725 **
temp -1.076e+01 4.303e+00 -2.501 0.01401 *
wind -3.237e+01 1.173e+01 -2.760 0.00687 **
rad -3.117e-01 5.585e-01 -0.558 0.57799
temp:wind 2.377e-01 1.367e-01 1.739 0.08519
temp:rad 8.402e-03 7.512e-03 1.119 0.26602
wind:rad 2.054e-02 4.892e-02 0.420 0.47552
temp:wind:rad -4.324e-04 6.595e-04 -0.656 0.51358
The three-way interaction is clearly not significant. This is how you remove it, to begin the process of model simplification:
model2 <- update(model1,~. - temp:wind:rad)
summary(model2)
Depending on the results, you can continue simplifying your model:
model3 <- update(model2,~. - temp:rad)
summary(model3)
...
Alternatively you can use the automatic model simplification function step
, to see
how well it does:
model_step <- step(model1)
Here is an example. Start with the most complicated model: this includes interactions between all three explanatory variables.
model1 <-lm (ozone~temp*wind*rad)
summary(model1)
Coefficients:
Estimate Std.Error t value Pr(>t)
(Intercept) 5.683e+02 2.073e+02 2.741 0.00725 **
temp -1.076e+01 4.303e+00 -2.501 0.01401 *
wind -3.237e+01 1.173e+01 -2.760 0.00687 **
rad -3.117e-01 5.585e-01 -0.558 0.57799
temp:wind 2.377e-01 1.367e-01 1.739 0.08519
temp:rad 8.402e-03 7.512e-03 1.119 0.26602
wind:rad 2.054e-02 4.892e-02 0.420 0.47552
temp:wind:rad -4.324e-04 6.595e-04 -0.656 0.51358
The three-way interaction is clearly not significant. This is how you remove it, to begin the process of model simplification:
model2 <- update(model1,~. - temp:wind:rad)
summary(model2)
Depending on the results, you can continue simplifying your model:
model3 <- update(model2,~. - temp:rad)
summary(model3)
...
Alternatively you can use the automatic model simplification function step
, to see
how well it does:
model_step <- step(model1)
answered Sep 13 '10 at 14:39
George Dontas
21.1k1586125
21.1k1586125
1
Thanks for your answer. I just realized that I did not state my question clearlly enough: I am looking for a command or package that does this automatically, using the p-value as a criterion. The command "step" uses the AIC. I could also do it by "hand" as you suggets or programm some routine that does this automatically, but an already implemented version would come in very handy.
– DainisZ
Sep 13 '10 at 15:03
add a comment |
1
Thanks for your answer. I just realized that I did not state my question clearlly enough: I am looking for a command or package that does this automatically, using the p-value as a criterion. The command "step" uses the AIC. I could also do it by "hand" as you suggets or programm some routine that does this automatically, but an already implemented version would come in very handy.
– DainisZ
Sep 13 '10 at 15:03
1
1
Thanks for your answer. I just realized that I did not state my question clearlly enough: I am looking for a command or package that does this automatically, using the p-value as a criterion. The command "step" uses the AIC. I could also do it by "hand" as you suggets or programm some routine that does this automatically, but an already implemented version would come in very handy.
– DainisZ
Sep 13 '10 at 15:03
Thanks for your answer. I just realized that I did not state my question clearlly enough: I am looking for a command or package that does this automatically, using the p-value as a criterion. The command "step" uses the AIC. I could also do it by "hand" as you suggets or programm some routine that does this automatically, but an already implemented version would come in very handy.
– DainisZ
Sep 13 '10 at 15:03
add a comment |
up vote
7
down vote
If you are just trying to get the best predictive model, then perhaps it doesn't matter too much, but for anything else, don't bother with this sort of model selection. It is wrong.
Use a shrinkage methods such as ridge regression (in lm.ridge()
in package MASS for example), or the lasso, or the elasticnet (a combination of ridge and lasso constraints). Of these, only the lasso and elastic net will do some form of model selection, i.e. force the coefficients of some covariates to zero.
See the Regularization and Shrinkage section of the Machine Learning task view on CRAN.
add a comment |
up vote
7
down vote
If you are just trying to get the best predictive model, then perhaps it doesn't matter too much, but for anything else, don't bother with this sort of model selection. It is wrong.
Use a shrinkage methods such as ridge regression (in lm.ridge()
in package MASS for example), or the lasso, or the elasticnet (a combination of ridge and lasso constraints). Of these, only the lasso and elastic net will do some form of model selection, i.e. force the coefficients of some covariates to zero.
See the Regularization and Shrinkage section of the Machine Learning task view on CRAN.
add a comment |
up vote
7
down vote
up vote
7
down vote
If you are just trying to get the best predictive model, then perhaps it doesn't matter too much, but for anything else, don't bother with this sort of model selection. It is wrong.
Use a shrinkage methods such as ridge regression (in lm.ridge()
in package MASS for example), or the lasso, or the elasticnet (a combination of ridge and lasso constraints). Of these, only the lasso and elastic net will do some form of model selection, i.e. force the coefficients of some covariates to zero.
See the Regularization and Shrinkage section of the Machine Learning task view on CRAN.
If you are just trying to get the best predictive model, then perhaps it doesn't matter too much, but for anything else, don't bother with this sort of model selection. It is wrong.
Use a shrinkage methods such as ridge regression (in lm.ridge()
in package MASS for example), or the lasso, or the elasticnet (a combination of ridge and lasso constraints). Of these, only the lasso and elastic net will do some form of model selection, i.e. force the coefficients of some covariates to zero.
See the Regularization and Shrinkage section of the Machine Learning task view on CRAN.
edited Feb 12 at 10:27
zx8754
28.9k76395
28.9k76395
answered Sep 21 '10 at 17:54
Gavin Simpson
134k19300378
134k19300378
add a comment |
add a comment |
up vote
7
down vote
Package rms: Regression Modeling Strategies has fastbw()
that does exactly what you need. There is even a parameter to flip from AIC to p-value based elimination.
add a comment |
up vote
7
down vote
Package rms: Regression Modeling Strategies has fastbw()
that does exactly what you need. There is even a parameter to flip from AIC to p-value based elimination.
add a comment |
up vote
7
down vote
up vote
7
down vote
Package rms: Regression Modeling Strategies has fastbw()
that does exactly what you need. There is even a parameter to flip from AIC to p-value based elimination.
Package rms: Regression Modeling Strategies has fastbw()
that does exactly what you need. There is even a parameter to flip from AIC to p-value based elimination.
edited Feb 12 at 10:28
zx8754
28.9k76395
28.9k76395
answered Dec 2 '11 at 19:21
Chris
9111
9111
add a comment |
add a comment |
up vote
0
down vote
As mentioned by Gavin Simpson the function fastbw
from rms
package can be used to select variables using the p-value. Bellow is an example using the example given by George Dontas. Use the option rule='p'
to select p-value criteria.
require(rms)
model1 <- ols(Ozone ~ Temp * Wind * Solar.R, data=airquality)
model2 <- fastbw(fit=model1, rule="p", sls=0.05)
model2
In the text, you meant the rms package. There is also an rsm package, so this could cause confusion.
– rvl
Nov 23 at 19:47
Thanks rvl for the clarification. I fixed it.
– fhernanb
Nov 23 at 20:11
add a comment |
up vote
0
down vote
As mentioned by Gavin Simpson the function fastbw
from rms
package can be used to select variables using the p-value. Bellow is an example using the example given by George Dontas. Use the option rule='p'
to select p-value criteria.
require(rms)
model1 <- ols(Ozone ~ Temp * Wind * Solar.R, data=airquality)
model2 <- fastbw(fit=model1, rule="p", sls=0.05)
model2
In the text, you meant the rms package. There is also an rsm package, so this could cause confusion.
– rvl
Nov 23 at 19:47
Thanks rvl for the clarification. I fixed it.
– fhernanb
Nov 23 at 20:11
add a comment |
up vote
0
down vote
up vote
0
down vote
As mentioned by Gavin Simpson the function fastbw
from rms
package can be used to select variables using the p-value. Bellow is an example using the example given by George Dontas. Use the option rule='p'
to select p-value criteria.
require(rms)
model1 <- ols(Ozone ~ Temp * Wind * Solar.R, data=airquality)
model2 <- fastbw(fit=model1, rule="p", sls=0.05)
model2
As mentioned by Gavin Simpson the function fastbw
from rms
package can be used to select variables using the p-value. Bellow is an example using the example given by George Dontas. Use the option rule='p'
to select p-value criteria.
require(rms)
model1 <- ols(Ozone ~ Temp * Wind * Solar.R, data=airquality)
model2 <- fastbw(fit=model1, rule="p", sls=0.05)
model2
edited Nov 23 at 20:10
answered Nov 22 at 15:59
fhernanb
16619
16619
In the text, you meant the rms package. There is also an rsm package, so this could cause confusion.
– rvl
Nov 23 at 19:47
Thanks rvl for the clarification. I fixed it.
– fhernanb
Nov 23 at 20:11
add a comment |
In the text, you meant the rms package. There is also an rsm package, so this could cause confusion.
– rvl
Nov 23 at 19:47
Thanks rvl for the clarification. I fixed it.
– fhernanb
Nov 23 at 20:11
In the text, you meant the rms package. There is also an rsm package, so this could cause confusion.
– rvl
Nov 23 at 19:47
In the text, you meant the rms package. There is also an rsm package, so this could cause confusion.
– rvl
Nov 23 at 19:47
Thanks rvl for the clarification. I fixed it.
– fhernanb
Nov 23 at 20:11
Thanks rvl for the clarification. I fixed it.
– fhernanb
Nov 23 at 20:11
add a comment |
Thanks for contributing an answer to Stack Overflow!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f3701170%2fstepwise-regression-using-p-values-to-drop-variables-with-nonsignificant-p-value%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
22
I hope your boss doesn't read stackoverflow. ;-)
– Joshua Ulrich
Sep 13 '10 at 14:06
4
You might consider asking this question on here: stats.stackexchange.com
– Shane
Sep 13 '10 at 15:40
8
Might be easier to teach you boss good stats than to get R to do bad stats.
– Richard Herron
Sep 13 '10 at 19:26
8
Just pick three variables at random - you'll probably do just as well step-wise regression.
– hadley
Sep 13 '10 at 21:37
7
Does your boss also tell his doctor what medicine to prescribe and his mechanic how to fix his car?
– Rob Hyndman
Sep 14 '10 at 1:51