Turning a matrix to dummy matrix












0














I've generated a list of combination and would like to turn it into "dummies" matrix



 import pandas as pd
from itertools import combinations
comb = pd.DataFrame(list(combinations(range(1, 6), 4)))

0 1 2 3
0 1 2 3 4
1 1 2 3 5
2 1 2 4 5
3 1 3 4 5
4 2 3 4 5


would like to turn the above dataframe to a dataframe look like below. Thanks.



    1 2 3 4 5
0 1 1 1 1 0
1 1 1 1 0 1
2 1 1 0 1 1
3 1 0 1 1 1
4 0 1 1 1 1









share|improve this question



























    0














    I've generated a list of combination and would like to turn it into "dummies" matrix



     import pandas as pd
    from itertools import combinations
    comb = pd.DataFrame(list(combinations(range(1, 6), 4)))

    0 1 2 3
    0 1 2 3 4
    1 1 2 3 5
    2 1 2 4 5
    3 1 3 4 5
    4 2 3 4 5


    would like to turn the above dataframe to a dataframe look like below. Thanks.



        1 2 3 4 5
    0 1 1 1 1 0
    1 1 1 1 0 1
    2 1 1 0 1 1
    3 1 0 1 1 1
    4 0 1 1 1 1









    share|improve this question

























      0












      0








      0







      I've generated a list of combination and would like to turn it into "dummies" matrix



       import pandas as pd
      from itertools import combinations
      comb = pd.DataFrame(list(combinations(range(1, 6), 4)))

      0 1 2 3
      0 1 2 3 4
      1 1 2 3 5
      2 1 2 4 5
      3 1 3 4 5
      4 2 3 4 5


      would like to turn the above dataframe to a dataframe look like below. Thanks.



          1 2 3 4 5
      0 1 1 1 1 0
      1 1 1 1 0 1
      2 1 1 0 1 1
      3 1 0 1 1 1
      4 0 1 1 1 1









      share|improve this question













      I've generated a list of combination and would like to turn it into "dummies" matrix



       import pandas as pd
      from itertools import combinations
      comb = pd.DataFrame(list(combinations(range(1, 6), 4)))

      0 1 2 3
      0 1 2 3 4
      1 1 2 3 5
      2 1 2 4 5
      3 1 3 4 5
      4 2 3 4 5


      would like to turn the above dataframe to a dataframe look like below. Thanks.



          1 2 3 4 5
      0 1 1 1 1 0
      1 1 1 1 0 1
      2 1 1 0 1 1
      3 1 0 1 1 1
      4 0 1 1 1 1






      pandas python-2.7






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked Nov 23 at 1:46









      Lafayette

      99119




      99119
























          1 Answer
          1






          active

          oldest

          votes


















          1














          You can use MultiLabelBinarizer:



          from sklearn.preprocessing import MultiLabelBinarizer

          lb = MultiLabelBinarizer()
          df = pd.DataFrame(lb.fit_transform(comb.values), columns= lb.classes_)

          print (df)

          1 2 3 4 5
          0 1 1 1 1 0
          1 1 1 1 0 1
          2 1 1 0 1 1
          3 1 0 1 1 1
          4 0 1 1 1 1





          share|improve this answer





















            Your Answer






            StackExchange.ifUsing("editor", function () {
            StackExchange.using("externalEditor", function () {
            StackExchange.using("snippets", function () {
            StackExchange.snippets.init();
            });
            });
            }, "code-snippets");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "1"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });














            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53439759%2fturning-a-matrix-to-dummy-matrix%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            1














            You can use MultiLabelBinarizer:



            from sklearn.preprocessing import MultiLabelBinarizer

            lb = MultiLabelBinarizer()
            df = pd.DataFrame(lb.fit_transform(comb.values), columns= lb.classes_)

            print (df)

            1 2 3 4 5
            0 1 1 1 1 0
            1 1 1 1 0 1
            2 1 1 0 1 1
            3 1 0 1 1 1
            4 0 1 1 1 1





            share|improve this answer


























              1














              You can use MultiLabelBinarizer:



              from sklearn.preprocessing import MultiLabelBinarizer

              lb = MultiLabelBinarizer()
              df = pd.DataFrame(lb.fit_transform(comb.values), columns= lb.classes_)

              print (df)

              1 2 3 4 5
              0 1 1 1 1 0
              1 1 1 1 0 1
              2 1 1 0 1 1
              3 1 0 1 1 1
              4 0 1 1 1 1





              share|improve this answer
























                1












                1








                1






                You can use MultiLabelBinarizer:



                from sklearn.preprocessing import MultiLabelBinarizer

                lb = MultiLabelBinarizer()
                df = pd.DataFrame(lb.fit_transform(comb.values), columns= lb.classes_)

                print (df)

                1 2 3 4 5
                0 1 1 1 1 0
                1 1 1 1 0 1
                2 1 1 0 1 1
                3 1 0 1 1 1
                4 0 1 1 1 1





                share|improve this answer












                You can use MultiLabelBinarizer:



                from sklearn.preprocessing import MultiLabelBinarizer

                lb = MultiLabelBinarizer()
                df = pd.DataFrame(lb.fit_transform(comb.values), columns= lb.classes_)

                print (df)

                1 2 3 4 5
                0 1 1 1 1 0
                1 1 1 1 0 1
                2 1 1 0 1 1
                3 1 0 1 1 1
                4 0 1 1 1 1






                share|improve this answer












                share|improve this answer



                share|improve this answer










                answered Nov 23 at 1:58









                Abhi

                2,480320




                2,480320






























                    draft saved

                    draft discarded




















































                    Thanks for contributing an answer to Stack Overflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.





                    Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                    Please pay close attention to the following guidance:


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53439759%2fturning-a-matrix-to-dummy-matrix%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    What visual should I use to simply compare current year value vs last year in Power BI desktop

                    How to ignore python UserWarning in pytest?

                    Alexandru Averescu