What precisely does it mean to borrow information?
up vote
3
down vote
favorite
I often people them talk about information borrowing or information sharing in Bayesian hierarchical models. I can't seem to get a straight answer about what this actually means and if it is unique to Bayesian hierarchical models. I sort of get the idea: some levels in your hierarchy share a common parameter. I have no idea how this translates to "information borrowing" though.
Is "information borrowing"/ "information sharing" a buzz word people like to throw out?
Is there an example with closed form posteriors that illustrates this sharing phenomenon?
Is this unique to a Bayesian analysis? Generally, when I see examples of "information borrowing" they are just mixed models. Maybe I learned this models in an old fashioned way, but I don't see any sharing.
I am not interested in starting a philosophical debate about methods. I am just curious about the use of this term.
machine-learning bayesian multilevel-analysis terminology hierarchical-bayesian
add a comment |
up vote
3
down vote
favorite
I often people them talk about information borrowing or information sharing in Bayesian hierarchical models. I can't seem to get a straight answer about what this actually means and if it is unique to Bayesian hierarchical models. I sort of get the idea: some levels in your hierarchy share a common parameter. I have no idea how this translates to "information borrowing" though.
Is "information borrowing"/ "information sharing" a buzz word people like to throw out?
Is there an example with closed form posteriors that illustrates this sharing phenomenon?
Is this unique to a Bayesian analysis? Generally, when I see examples of "information borrowing" they are just mixed models. Maybe I learned this models in an old fashioned way, but I don't see any sharing.
I am not interested in starting a philosophical debate about methods. I am just curious about the use of this term.
machine-learning bayesian multilevel-analysis terminology hierarchical-bayesian
For your question 2., you may find this link illuminating: tjmahr.com/plotting-partial-pooling-in-mixed-effects-models.
– Isabella Ghement
3 hours ago
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I often people them talk about information borrowing or information sharing in Bayesian hierarchical models. I can't seem to get a straight answer about what this actually means and if it is unique to Bayesian hierarchical models. I sort of get the idea: some levels in your hierarchy share a common parameter. I have no idea how this translates to "information borrowing" though.
Is "information borrowing"/ "information sharing" a buzz word people like to throw out?
Is there an example with closed form posteriors that illustrates this sharing phenomenon?
Is this unique to a Bayesian analysis? Generally, when I see examples of "information borrowing" they are just mixed models. Maybe I learned this models in an old fashioned way, but I don't see any sharing.
I am not interested in starting a philosophical debate about methods. I am just curious about the use of this term.
machine-learning bayesian multilevel-analysis terminology hierarchical-bayesian
I often people them talk about information borrowing or information sharing in Bayesian hierarchical models. I can't seem to get a straight answer about what this actually means and if it is unique to Bayesian hierarchical models. I sort of get the idea: some levels in your hierarchy share a common parameter. I have no idea how this translates to "information borrowing" though.
Is "information borrowing"/ "information sharing" a buzz word people like to throw out?
Is there an example with closed form posteriors that illustrates this sharing phenomenon?
Is this unique to a Bayesian analysis? Generally, when I see examples of "information borrowing" they are just mixed models. Maybe I learned this models in an old fashioned way, but I don't see any sharing.
I am not interested in starting a philosophical debate about methods. I am just curious about the use of this term.
machine-learning bayesian multilevel-analysis terminology hierarchical-bayesian
machine-learning bayesian multilevel-analysis terminology hierarchical-bayesian
asked 5 hours ago
EliK
309112
309112
For your question 2., you may find this link illuminating: tjmahr.com/plotting-partial-pooling-in-mixed-effects-models.
– Isabella Ghement
3 hours ago
add a comment |
For your question 2., you may find this link illuminating: tjmahr.com/plotting-partial-pooling-in-mixed-effects-models.
– Isabella Ghement
3 hours ago
For your question 2., you may find this link illuminating: tjmahr.com/plotting-partial-pooling-in-mixed-effects-models.
– Isabella Ghement
3 hours ago
For your question 2., you may find this link illuminating: tjmahr.com/plotting-partial-pooling-in-mixed-effects-models.
– Isabella Ghement
3 hours ago
add a comment |
2 Answers
2
active
oldest
votes
up vote
3
down vote
Consider a simple problem like estimating means of multiple groups. If your model treats them as completely unrelated then the only information you have about each mean is the information within that group. If your model treats their means as somewhat related (such as in some mixed-effects type model) then the estimates will be more precise because information from other groups informs (regularizes, shrinks toward a common mean) the estimate for a given group. That's an example of 'borrowing information'.
add a comment |
up vote
0
down vote
This is a term that is specifically from empirical Bayes (EB), in fact the concept that it refers to does not exist in true Bayesian inference. The original term was "borrowing strength", which was coined by John Tukey back in the 1960s and popularized further by Bradley Efron and Carl Morris in a series of statistical articles on Stein's paradox and parametric EB in the 1970s and 1980s. Many people now use "information borrowing" or "information sharing" as synonyms for the same concept. The reason why you may hear it in the context of mixed models is that mixed models have an EB interpretation.
EB has many applications and applies to many statistical models, but the context always is that you have a large number of (possibly independent) cases and you are trying to estimate a particular parameter (such as the mean or variance) in each case. In Bayesian inference, you make posterior inferences about the parameter based on both the observed data for each case and the prior distribution for that parameter. In EB inference the prior distribution for the parameter is estimated from the whole collection of data cases, after which inference proceeds as for Bayesian inference. Hence, when you estimate the parameter for particular case, you are use both the data for that case and also the estimated prior distribution, and the latter represents the "information" or "strength" that you borrow from the whole ensemble of cases when making inference about one particular case.
Now you can see why EB has "borrowing" but true Bayes does not. In true Bayes, the prior distribution already exists and so doesn't need to be begged or borrowed. In EB, the prior distribution has be created from the observed data itself. When we make inference about a particular case, we use all the observed information from that case and a little bit of information from each of the other cases. We say it is only "borrowed", because the information is given back when we move on to make inference about the next case.
The idea of "information borrowing" is used heavily in statistical genomics, when each "case" is usually a gene or a genomic feature (Smyth, 2004; Phipson et al, 2016).
References
Efron, Bradley, and Carl Morris. Stein's paradox in statistics. Scientific American 236, no. 5 (1977): 119-127. http://statweb.stanford.edu/~ckirby/brad/other/Article1977.pdf
Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology Volume 3, Issue 1, Article 3.
http://www.statsci.org/smyth/pubs/ebayes.pdf
Phipson, B, Lee, S, Majewski, IJ, Alexander, WS, and Smyth, GK (2016). Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Annals of Applied Statistics 10, 946-963.
http://dx.doi.org/10.1214/16-AOAS920
I don't think this interpretation is correct. For example, mixed effects models borrow information, yet can be analyzed in a traditional Bayesian context
– Cliff AB
30 mins ago
@CliffAB If you dig into mixed model analyses, you will find that the analysis is virtually always empirical Bayes rather than true Bayes. Most authors of course will say they are doing Bayes when it is actually EB because most authors don't make the distinction. If you think can you give an example of a true Bayes mixed model analysis, then I invite you to do so.
– Gordon Smyth
13 mins ago
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "65"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f381761%2fwhat-precisely-does-it-mean-to-borrow-information%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
Consider a simple problem like estimating means of multiple groups. If your model treats them as completely unrelated then the only information you have about each mean is the information within that group. If your model treats their means as somewhat related (such as in some mixed-effects type model) then the estimates will be more precise because information from other groups informs (regularizes, shrinks toward a common mean) the estimate for a given group. That's an example of 'borrowing information'.
add a comment |
up vote
3
down vote
Consider a simple problem like estimating means of multiple groups. If your model treats them as completely unrelated then the only information you have about each mean is the information within that group. If your model treats their means as somewhat related (such as in some mixed-effects type model) then the estimates will be more precise because information from other groups informs (regularizes, shrinks toward a common mean) the estimate for a given group. That's an example of 'borrowing information'.
add a comment |
up vote
3
down vote
up vote
3
down vote
Consider a simple problem like estimating means of multiple groups. If your model treats them as completely unrelated then the only information you have about each mean is the information within that group. If your model treats their means as somewhat related (such as in some mixed-effects type model) then the estimates will be more precise because information from other groups informs (regularizes, shrinks toward a common mean) the estimate for a given group. That's an example of 'borrowing information'.
Consider a simple problem like estimating means of multiple groups. If your model treats them as completely unrelated then the only information you have about each mean is the information within that group. If your model treats their means as somewhat related (such as in some mixed-effects type model) then the estimates will be more precise because information from other groups informs (regularizes, shrinks toward a common mean) the estimate for a given group. That's an example of 'borrowing information'.
edited 39 mins ago
answered 4 hours ago
Glen_b♦
208k22396735
208k22396735
add a comment |
add a comment |
up vote
0
down vote
This is a term that is specifically from empirical Bayes (EB), in fact the concept that it refers to does not exist in true Bayesian inference. The original term was "borrowing strength", which was coined by John Tukey back in the 1960s and popularized further by Bradley Efron and Carl Morris in a series of statistical articles on Stein's paradox and parametric EB in the 1970s and 1980s. Many people now use "information borrowing" or "information sharing" as synonyms for the same concept. The reason why you may hear it in the context of mixed models is that mixed models have an EB interpretation.
EB has many applications and applies to many statistical models, but the context always is that you have a large number of (possibly independent) cases and you are trying to estimate a particular parameter (such as the mean or variance) in each case. In Bayesian inference, you make posterior inferences about the parameter based on both the observed data for each case and the prior distribution for that parameter. In EB inference the prior distribution for the parameter is estimated from the whole collection of data cases, after which inference proceeds as for Bayesian inference. Hence, when you estimate the parameter for particular case, you are use both the data for that case and also the estimated prior distribution, and the latter represents the "information" or "strength" that you borrow from the whole ensemble of cases when making inference about one particular case.
Now you can see why EB has "borrowing" but true Bayes does not. In true Bayes, the prior distribution already exists and so doesn't need to be begged or borrowed. In EB, the prior distribution has be created from the observed data itself. When we make inference about a particular case, we use all the observed information from that case and a little bit of information from each of the other cases. We say it is only "borrowed", because the information is given back when we move on to make inference about the next case.
The idea of "information borrowing" is used heavily in statistical genomics, when each "case" is usually a gene or a genomic feature (Smyth, 2004; Phipson et al, 2016).
References
Efron, Bradley, and Carl Morris. Stein's paradox in statistics. Scientific American 236, no. 5 (1977): 119-127. http://statweb.stanford.edu/~ckirby/brad/other/Article1977.pdf
Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology Volume 3, Issue 1, Article 3.
http://www.statsci.org/smyth/pubs/ebayes.pdf
Phipson, B, Lee, S, Majewski, IJ, Alexander, WS, and Smyth, GK (2016). Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Annals of Applied Statistics 10, 946-963.
http://dx.doi.org/10.1214/16-AOAS920
I don't think this interpretation is correct. For example, mixed effects models borrow information, yet can be analyzed in a traditional Bayesian context
– Cliff AB
30 mins ago
@CliffAB If you dig into mixed model analyses, you will find that the analysis is virtually always empirical Bayes rather than true Bayes. Most authors of course will say they are doing Bayes when it is actually EB because most authors don't make the distinction. If you think can you give an example of a true Bayes mixed model analysis, then I invite you to do so.
– Gordon Smyth
13 mins ago
add a comment |
up vote
0
down vote
This is a term that is specifically from empirical Bayes (EB), in fact the concept that it refers to does not exist in true Bayesian inference. The original term was "borrowing strength", which was coined by John Tukey back in the 1960s and popularized further by Bradley Efron and Carl Morris in a series of statistical articles on Stein's paradox and parametric EB in the 1970s and 1980s. Many people now use "information borrowing" or "information sharing" as synonyms for the same concept. The reason why you may hear it in the context of mixed models is that mixed models have an EB interpretation.
EB has many applications and applies to many statistical models, but the context always is that you have a large number of (possibly independent) cases and you are trying to estimate a particular parameter (such as the mean or variance) in each case. In Bayesian inference, you make posterior inferences about the parameter based on both the observed data for each case and the prior distribution for that parameter. In EB inference the prior distribution for the parameter is estimated from the whole collection of data cases, after which inference proceeds as for Bayesian inference. Hence, when you estimate the parameter for particular case, you are use both the data for that case and also the estimated prior distribution, and the latter represents the "information" or "strength" that you borrow from the whole ensemble of cases when making inference about one particular case.
Now you can see why EB has "borrowing" but true Bayes does not. In true Bayes, the prior distribution already exists and so doesn't need to be begged or borrowed. In EB, the prior distribution has be created from the observed data itself. When we make inference about a particular case, we use all the observed information from that case and a little bit of information from each of the other cases. We say it is only "borrowed", because the information is given back when we move on to make inference about the next case.
The idea of "information borrowing" is used heavily in statistical genomics, when each "case" is usually a gene or a genomic feature (Smyth, 2004; Phipson et al, 2016).
References
Efron, Bradley, and Carl Morris. Stein's paradox in statistics. Scientific American 236, no. 5 (1977): 119-127. http://statweb.stanford.edu/~ckirby/brad/other/Article1977.pdf
Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology Volume 3, Issue 1, Article 3.
http://www.statsci.org/smyth/pubs/ebayes.pdf
Phipson, B, Lee, S, Majewski, IJ, Alexander, WS, and Smyth, GK (2016). Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Annals of Applied Statistics 10, 946-963.
http://dx.doi.org/10.1214/16-AOAS920
I don't think this interpretation is correct. For example, mixed effects models borrow information, yet can be analyzed in a traditional Bayesian context
– Cliff AB
30 mins ago
@CliffAB If you dig into mixed model analyses, you will find that the analysis is virtually always empirical Bayes rather than true Bayes. Most authors of course will say they are doing Bayes when it is actually EB because most authors don't make the distinction. If you think can you give an example of a true Bayes mixed model analysis, then I invite you to do so.
– Gordon Smyth
13 mins ago
add a comment |
up vote
0
down vote
up vote
0
down vote
This is a term that is specifically from empirical Bayes (EB), in fact the concept that it refers to does not exist in true Bayesian inference. The original term was "borrowing strength", which was coined by John Tukey back in the 1960s and popularized further by Bradley Efron and Carl Morris in a series of statistical articles on Stein's paradox and parametric EB in the 1970s and 1980s. Many people now use "information borrowing" or "information sharing" as synonyms for the same concept. The reason why you may hear it in the context of mixed models is that mixed models have an EB interpretation.
EB has many applications and applies to many statistical models, but the context always is that you have a large number of (possibly independent) cases and you are trying to estimate a particular parameter (such as the mean or variance) in each case. In Bayesian inference, you make posterior inferences about the parameter based on both the observed data for each case and the prior distribution for that parameter. In EB inference the prior distribution for the parameter is estimated from the whole collection of data cases, after which inference proceeds as for Bayesian inference. Hence, when you estimate the parameter for particular case, you are use both the data for that case and also the estimated prior distribution, and the latter represents the "information" or "strength" that you borrow from the whole ensemble of cases when making inference about one particular case.
Now you can see why EB has "borrowing" but true Bayes does not. In true Bayes, the prior distribution already exists and so doesn't need to be begged or borrowed. In EB, the prior distribution has be created from the observed data itself. When we make inference about a particular case, we use all the observed information from that case and a little bit of information from each of the other cases. We say it is only "borrowed", because the information is given back when we move on to make inference about the next case.
The idea of "information borrowing" is used heavily in statistical genomics, when each "case" is usually a gene or a genomic feature (Smyth, 2004; Phipson et al, 2016).
References
Efron, Bradley, and Carl Morris. Stein's paradox in statistics. Scientific American 236, no. 5 (1977): 119-127. http://statweb.stanford.edu/~ckirby/brad/other/Article1977.pdf
Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology Volume 3, Issue 1, Article 3.
http://www.statsci.org/smyth/pubs/ebayes.pdf
Phipson, B, Lee, S, Majewski, IJ, Alexander, WS, and Smyth, GK (2016). Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Annals of Applied Statistics 10, 946-963.
http://dx.doi.org/10.1214/16-AOAS920
This is a term that is specifically from empirical Bayes (EB), in fact the concept that it refers to does not exist in true Bayesian inference. The original term was "borrowing strength", which was coined by John Tukey back in the 1960s and popularized further by Bradley Efron and Carl Morris in a series of statistical articles on Stein's paradox and parametric EB in the 1970s and 1980s. Many people now use "information borrowing" or "information sharing" as synonyms for the same concept. The reason why you may hear it in the context of mixed models is that mixed models have an EB interpretation.
EB has many applications and applies to many statistical models, but the context always is that you have a large number of (possibly independent) cases and you are trying to estimate a particular parameter (such as the mean or variance) in each case. In Bayesian inference, you make posterior inferences about the parameter based on both the observed data for each case and the prior distribution for that parameter. In EB inference the prior distribution for the parameter is estimated from the whole collection of data cases, after which inference proceeds as for Bayesian inference. Hence, when you estimate the parameter for particular case, you are use both the data for that case and also the estimated prior distribution, and the latter represents the "information" or "strength" that you borrow from the whole ensemble of cases when making inference about one particular case.
Now you can see why EB has "borrowing" but true Bayes does not. In true Bayes, the prior distribution already exists and so doesn't need to be begged or borrowed. In EB, the prior distribution has be created from the observed data itself. When we make inference about a particular case, we use all the observed information from that case and a little bit of information from each of the other cases. We say it is only "borrowed", because the information is given back when we move on to make inference about the next case.
The idea of "information borrowing" is used heavily in statistical genomics, when each "case" is usually a gene or a genomic feature (Smyth, 2004; Phipson et al, 2016).
References
Efron, Bradley, and Carl Morris. Stein's paradox in statistics. Scientific American 236, no. 5 (1977): 119-127. http://statweb.stanford.edu/~ckirby/brad/other/Article1977.pdf
Smyth, G. K. (2004). Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Statistical Applications in Genetics and Molecular Biology Volume 3, Issue 1, Article 3.
http://www.statsci.org/smyth/pubs/ebayes.pdf
Phipson, B, Lee, S, Majewski, IJ, Alexander, WS, and Smyth, GK (2016). Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Annals of Applied Statistics 10, 946-963.
http://dx.doi.org/10.1214/16-AOAS920
edited 33 mins ago
answered 1 hour ago
Gordon Smyth
4,4331124
4,4331124
I don't think this interpretation is correct. For example, mixed effects models borrow information, yet can be analyzed in a traditional Bayesian context
– Cliff AB
30 mins ago
@CliffAB If you dig into mixed model analyses, you will find that the analysis is virtually always empirical Bayes rather than true Bayes. Most authors of course will say they are doing Bayes when it is actually EB because most authors don't make the distinction. If you think can you give an example of a true Bayes mixed model analysis, then I invite you to do so.
– Gordon Smyth
13 mins ago
add a comment |
I don't think this interpretation is correct. For example, mixed effects models borrow information, yet can be analyzed in a traditional Bayesian context
– Cliff AB
30 mins ago
@CliffAB If you dig into mixed model analyses, you will find that the analysis is virtually always empirical Bayes rather than true Bayes. Most authors of course will say they are doing Bayes when it is actually EB because most authors don't make the distinction. If you think can you give an example of a true Bayes mixed model analysis, then I invite you to do so.
– Gordon Smyth
13 mins ago
I don't think this interpretation is correct. For example, mixed effects models borrow information, yet can be analyzed in a traditional Bayesian context
– Cliff AB
30 mins ago
I don't think this interpretation is correct. For example, mixed effects models borrow information, yet can be analyzed in a traditional Bayesian context
– Cliff AB
30 mins ago
@CliffAB If you dig into mixed model analyses, you will find that the analysis is virtually always empirical Bayes rather than true Bayes. Most authors of course will say they are doing Bayes when it is actually EB because most authors don't make the distinction. If you think can you give an example of a true Bayes mixed model analysis, then I invite you to do so.
– Gordon Smyth
13 mins ago
@CliffAB If you dig into mixed model analyses, you will find that the analysis is virtually always empirical Bayes rather than true Bayes. Most authors of course will say they are doing Bayes when it is actually EB because most authors don't make the distinction. If you think can you give an example of a true Bayes mixed model analysis, then I invite you to do so.
– Gordon Smyth
13 mins ago
add a comment |
Thanks for contributing an answer to Cross Validated!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstats.stackexchange.com%2fquestions%2f381761%2fwhat-precisely-does-it-mean-to-borrow-information%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
For your question 2., you may find this link illuminating: tjmahr.com/plotting-partial-pooling-in-mixed-effects-models.
– Isabella Ghement
3 hours ago