Protein electrophoresis












1














Three proteins A, B and C of equal molecular weight are being investigated in a study. They contain six, four and four cysteine residues respectively. Only Proteins A and B were treated with β-mercaptoethanol (which reduces disulphide bond) and heated in boiling water bath for a few minutes. Which of the following is expected in the SDS PAGE gel run?



a. Protein C will move fastest.



b. Protein B will move fastest.



c. Proteins A and B will move at the same speed but faster than C.



d. Proteins B and C will move at the same speed.



Before knowing the answer the I thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein B and C, as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will, so it will be billore and hence will be behind Protein B. So B will be fastest?



But the answer key says C, I am not really sure how?



So the answer is C . Before knowing the answer I thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein b and c as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will so it will be billore and hence will be behind Protein B. So B will be fastest? But the answer key says C










share|improve this question




















  • 1




    Welcome to Biology.SE. Please note that homework questions are only on-topic here, if you show that and how you have tried to answer the question yourself. We'll gladly help you with understanding a problem, but we won't just answer it. Please add your own try to answer this question.
    – Nicolai
    Nov 22 at 16:43












  • I did try it. Sorry I am new to stack exchange. So the answer is C . Before knowing the answer the i thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein b and c as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will so it will be billore and hence will be behind Protein B. So B will be fastest? But the answer key says C
    – Ravleen Kaur
    Nov 22 at 18:41






  • 1




    I've made an edit to add your description to the answer (people won't always read the comments, so it's better to update the question), you can accept that edit (I think?) or also add something by yourself.
    – Nicolai
    Nov 22 at 19:42
















1














Three proteins A, B and C of equal molecular weight are being investigated in a study. They contain six, four and four cysteine residues respectively. Only Proteins A and B were treated with β-mercaptoethanol (which reduces disulphide bond) and heated in boiling water bath for a few minutes. Which of the following is expected in the SDS PAGE gel run?



a. Protein C will move fastest.



b. Protein B will move fastest.



c. Proteins A and B will move at the same speed but faster than C.



d. Proteins B and C will move at the same speed.



Before knowing the answer the I thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein B and C, as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will, so it will be billore and hence will be behind Protein B. So B will be fastest?



But the answer key says C, I am not really sure how?



So the answer is C . Before knowing the answer I thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein b and c as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will so it will be billore and hence will be behind Protein B. So B will be fastest? But the answer key says C










share|improve this question




















  • 1




    Welcome to Biology.SE. Please note that homework questions are only on-topic here, if you show that and how you have tried to answer the question yourself. We'll gladly help you with understanding a problem, but we won't just answer it. Please add your own try to answer this question.
    – Nicolai
    Nov 22 at 16:43












  • I did try it. Sorry I am new to stack exchange. So the answer is C . Before knowing the answer the i thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein b and c as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will so it will be billore and hence will be behind Protein B. So B will be fastest? But the answer key says C
    – Ravleen Kaur
    Nov 22 at 18:41






  • 1




    I've made an edit to add your description to the answer (people won't always read the comments, so it's better to update the question), you can accept that edit (I think?) or also add something by yourself.
    – Nicolai
    Nov 22 at 19:42














1












1








1


1





Three proteins A, B and C of equal molecular weight are being investigated in a study. They contain six, four and four cysteine residues respectively. Only Proteins A and B were treated with β-mercaptoethanol (which reduces disulphide bond) and heated in boiling water bath for a few minutes. Which of the following is expected in the SDS PAGE gel run?



a. Protein C will move fastest.



b. Protein B will move fastest.



c. Proteins A and B will move at the same speed but faster than C.



d. Proteins B and C will move at the same speed.



Before knowing the answer the I thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein B and C, as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will, so it will be billore and hence will be behind Protein B. So B will be fastest?



But the answer key says C, I am not really sure how?



So the answer is C . Before knowing the answer I thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein b and c as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will so it will be billore and hence will be behind Protein B. So B will be fastest? But the answer key says C










share|improve this question















Three proteins A, B and C of equal molecular weight are being investigated in a study. They contain six, four and four cysteine residues respectively. Only Proteins A and B were treated with β-mercaptoethanol (which reduces disulphide bond) and heated in boiling water bath for a few minutes. Which of the following is expected in the SDS PAGE gel run?



a. Protein C will move fastest.



b. Protein B will move fastest.



c. Proteins A and B will move at the same speed but faster than C.



d. Proteins B and C will move at the same speed.



Before knowing the answer the I thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein B and C, as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will, so it will be billore and hence will be behind Protein B. So B will be fastest?



But the answer key says C, I am not really sure how?



So the answer is C . Before knowing the answer I thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein b and c as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will so it will be billore and hence will be behind Protein B. So B will be fastest? But the answer key says C







molecular-biology cell-biology homework biotechnology






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 23 at 3:02

























asked Nov 22 at 16:31









Ravleen Kaur

113




113








  • 1




    Welcome to Biology.SE. Please note that homework questions are only on-topic here, if you show that and how you have tried to answer the question yourself. We'll gladly help you with understanding a problem, but we won't just answer it. Please add your own try to answer this question.
    – Nicolai
    Nov 22 at 16:43












  • I did try it. Sorry I am new to stack exchange. So the answer is C . Before knowing the answer the i thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein b and c as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will so it will be billore and hence will be behind Protein B. So B will be fastest? But the answer key says C
    – Ravleen Kaur
    Nov 22 at 18:41






  • 1




    I've made an edit to add your description to the answer (people won't always read the comments, so it's better to update the question), you can accept that edit (I think?) or also add something by yourself.
    – Nicolai
    Nov 22 at 19:42














  • 1




    Welcome to Biology.SE. Please note that homework questions are only on-topic here, if you show that and how you have tried to answer the question yourself. We'll gladly help you with understanding a problem, but we won't just answer it. Please add your own try to answer this question.
    – Nicolai
    Nov 22 at 16:43












  • I did try it. Sorry I am new to stack exchange. So the answer is C . Before knowing the answer the i thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein b and c as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will so it will be billore and hence will be behind Protein B. So B will be fastest? But the answer key says C
    – Ravleen Kaur
    Nov 22 at 18:41






  • 1




    I've made an edit to add your description to the answer (people won't always read the comments, so it's better to update the question), you can accept that edit (I think?) or also add something by yourself.
    – Nicolai
    Nov 22 at 19:42








1




1




Welcome to Biology.SE. Please note that homework questions are only on-topic here, if you show that and how you have tried to answer the question yourself. We'll gladly help you with understanding a problem, but we won't just answer it. Please add your own try to answer this question.
– Nicolai
Nov 22 at 16:43






Welcome to Biology.SE. Please note that homework questions are only on-topic here, if you show that and how you have tried to answer the question yourself. We'll gladly help you with understanding a problem, but we won't just answer it. Please add your own try to answer this question.
– Nicolai
Nov 22 at 16:43














I did try it. Sorry I am new to stack exchange. So the answer is C . Before knowing the answer the i thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein b and c as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will so it will be billore and hence will be behind Protein B. So B will be fastest? But the answer key says C
– Ravleen Kaur
Nov 22 at 18:41




I did try it. Sorry I am new to stack exchange. So the answer is C . Before knowing the answer the i thought the answer would be b. Because as Protein A has the most no. of amino acids so it will be behind Protein B and C for sure. And for protein b and c as Protein B has been in a reducing environment it will not form disulfide bridges but Protein C will so it will be billore and hence will be behind Protein B. So B will be fastest? But the answer key says C
– Ravleen Kaur
Nov 22 at 18:41




1




1




I've made an edit to add your description to the answer (people won't always read the comments, so it's better to update the question), you can accept that edit (I think?) or also add something by yourself.
– Nicolai
Nov 22 at 19:42




I've made an edit to add your description to the answer (people won't always read the comments, so it's better to update the question), you can accept that edit (I think?) or also add something by yourself.
– Nicolai
Nov 22 at 19:42










1 Answer
1






active

oldest

votes


















4














The problem statement says all the proteins have the same molecular weight but does not say how many amino acids they have. It does say how many cysteine amino acids each has, but not how many other kinds they have. Cysteine forms disulfide bonds, holding bends in the protein structure.



BiteSizeBio says:




SDS is a detergent that is present in the SDS-PAGE sample buffer where, along with a bit of boiling, and a reducing agent (normally DTT or B-ME to break down protein-protein disulphide bonds), it disrupts the tertiary structure of proteins. This brings the folded proteins down to linear molecules. SDS also coats the protein with a uniform negative charge, which masks the intrinsic charges on the R-groups.




So the point to SDS-PAGE is to have proteins migrate in the gel according to molecular weight without regard to the natural charges carried by the various component amino acids. The three proteins should thus migrate at the same rates in SDS-PAGE (not A being slower than B and C, as OP thought).



However, protein C is not treated with β-mercaptoethanol (B-ME) which is an important part of SDS-PAGE, so it retains the disulfide cross-links and thus is not a linear string of amino acids. Hence C will migrate more slowly than A and B, and the expected result is as stated in choice (c.).






share|improve this answer





















  • Thanks @mgkrebbs. Got it.
    – Ravleen Kaur
    Nov 23 at 3:04











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "375"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: false,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: null,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});














draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fbiology.stackexchange.com%2fquestions%2f79219%2fprotein-electrophoresis%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









4














The problem statement says all the proteins have the same molecular weight but does not say how many amino acids they have. It does say how many cysteine amino acids each has, but not how many other kinds they have. Cysteine forms disulfide bonds, holding bends in the protein structure.



BiteSizeBio says:




SDS is a detergent that is present in the SDS-PAGE sample buffer where, along with a bit of boiling, and a reducing agent (normally DTT or B-ME to break down protein-protein disulphide bonds), it disrupts the tertiary structure of proteins. This brings the folded proteins down to linear molecules. SDS also coats the protein with a uniform negative charge, which masks the intrinsic charges on the R-groups.




So the point to SDS-PAGE is to have proteins migrate in the gel according to molecular weight without regard to the natural charges carried by the various component amino acids. The three proteins should thus migrate at the same rates in SDS-PAGE (not A being slower than B and C, as OP thought).



However, protein C is not treated with β-mercaptoethanol (B-ME) which is an important part of SDS-PAGE, so it retains the disulfide cross-links and thus is not a linear string of amino acids. Hence C will migrate more slowly than A and B, and the expected result is as stated in choice (c.).






share|improve this answer





















  • Thanks @mgkrebbs. Got it.
    – Ravleen Kaur
    Nov 23 at 3:04
















4














The problem statement says all the proteins have the same molecular weight but does not say how many amino acids they have. It does say how many cysteine amino acids each has, but not how many other kinds they have. Cysteine forms disulfide bonds, holding bends in the protein structure.



BiteSizeBio says:




SDS is a detergent that is present in the SDS-PAGE sample buffer where, along with a bit of boiling, and a reducing agent (normally DTT or B-ME to break down protein-protein disulphide bonds), it disrupts the tertiary structure of proteins. This brings the folded proteins down to linear molecules. SDS also coats the protein with a uniform negative charge, which masks the intrinsic charges on the R-groups.




So the point to SDS-PAGE is to have proteins migrate in the gel according to molecular weight without regard to the natural charges carried by the various component amino acids. The three proteins should thus migrate at the same rates in SDS-PAGE (not A being slower than B and C, as OP thought).



However, protein C is not treated with β-mercaptoethanol (B-ME) which is an important part of SDS-PAGE, so it retains the disulfide cross-links and thus is not a linear string of amino acids. Hence C will migrate more slowly than A and B, and the expected result is as stated in choice (c.).






share|improve this answer





















  • Thanks @mgkrebbs. Got it.
    – Ravleen Kaur
    Nov 23 at 3:04














4












4








4






The problem statement says all the proteins have the same molecular weight but does not say how many amino acids they have. It does say how many cysteine amino acids each has, but not how many other kinds they have. Cysteine forms disulfide bonds, holding bends in the protein structure.



BiteSizeBio says:




SDS is a detergent that is present in the SDS-PAGE sample buffer where, along with a bit of boiling, and a reducing agent (normally DTT or B-ME to break down protein-protein disulphide bonds), it disrupts the tertiary structure of proteins. This brings the folded proteins down to linear molecules. SDS also coats the protein with a uniform negative charge, which masks the intrinsic charges on the R-groups.




So the point to SDS-PAGE is to have proteins migrate in the gel according to molecular weight without regard to the natural charges carried by the various component amino acids. The three proteins should thus migrate at the same rates in SDS-PAGE (not A being slower than B and C, as OP thought).



However, protein C is not treated with β-mercaptoethanol (B-ME) which is an important part of SDS-PAGE, so it retains the disulfide cross-links and thus is not a linear string of amino acids. Hence C will migrate more slowly than A and B, and the expected result is as stated in choice (c.).






share|improve this answer












The problem statement says all the proteins have the same molecular weight but does not say how many amino acids they have. It does say how many cysteine amino acids each has, but not how many other kinds they have. Cysteine forms disulfide bonds, holding bends in the protein structure.



BiteSizeBio says:




SDS is a detergent that is present in the SDS-PAGE sample buffer where, along with a bit of boiling, and a reducing agent (normally DTT or B-ME to break down protein-protein disulphide bonds), it disrupts the tertiary structure of proteins. This brings the folded proteins down to linear molecules. SDS also coats the protein with a uniform negative charge, which masks the intrinsic charges on the R-groups.




So the point to SDS-PAGE is to have proteins migrate in the gel according to molecular weight without regard to the natural charges carried by the various component amino acids. The three proteins should thus migrate at the same rates in SDS-PAGE (not A being slower than B and C, as OP thought).



However, protein C is not treated with β-mercaptoethanol (B-ME) which is an important part of SDS-PAGE, so it retains the disulfide cross-links and thus is not a linear string of amino acids. Hence C will migrate more slowly than A and B, and the expected result is as stated in choice (c.).







share|improve this answer












share|improve this answer



share|improve this answer










answered Nov 22 at 19:53









mgkrebbs

5,57511735




5,57511735












  • Thanks @mgkrebbs. Got it.
    – Ravleen Kaur
    Nov 23 at 3:04


















  • Thanks @mgkrebbs. Got it.
    – Ravleen Kaur
    Nov 23 at 3:04
















Thanks @mgkrebbs. Got it.
– Ravleen Kaur
Nov 23 at 3:04




Thanks @mgkrebbs. Got it.
– Ravleen Kaur
Nov 23 at 3:04


















draft saved

draft discarded




















































Thanks for contributing an answer to Biology Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fbiology.stackexchange.com%2fquestions%2f79219%2fprotein-electrophoresis%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

What visual should I use to simply compare current year value vs last year in Power BI desktop

Alexandru Averescu

Trompette piccolo