Drawing a perspective ellipse with TikZ











up vote
3
down vote

favorite












I made the following ellipse in Inkscape



enter image description here



But I would like to draw it within TikZ environment.My final goal is to put this ellipse inside a coordinate system. Using the image from Inkscape, here is my try



documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{3d,shapes.geometric,shadows.blur}
usepackage{graphicx}
% small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
makeatletter
tikzoption{canvas is xy plane at z}{%
deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
tikz@canvas@is@plane}
makeatother
begin{document}
tdplotsetmaincoords{60}{130}
begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
coordinate (O) at (0,0,0);
draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
draw[dashed] (O) -- (-1.2,0,0);

pgfmathsetmacro{rvec}{1.5}
pgfmathsetmacro{thetavec}{40}
pgfmathsetmacro{phivec}{60}
tdplotsetcoord{P}{rvec}{thetavec}{phivec}
node[anchor=south west,color=red] at (P) {$B$};
draw[-stealth,color=red,very thick] (O) -- (P);

begin{scope}[canvas is yz plane at x=0]
node (elliL) at (0,0) {includegraphics[width=.1textwidth]{image.eps}};
end{scope}
end{tikzpicture}
end{document}


enter image description here



Using Tikz my best attempt was



 documentclass[tikz,border=3.14mm]{standalone}
usepackage{tikz-3dplot}
usetikzlibrary{3d,shapes.geometric,shadows.blur}
usepackage{graphicx}
% small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
makeatletter
tikzoption{canvas is xy plane at z}{%
deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
tikz@canvas@is@plane}
makeatother
begin{document}
tdplotsetmaincoords{60}{130}
begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
coordinate (O) at (0,0,0);
draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
draw[dashed] (O) -- (-1.2,0,0);

pgfmathsetmacro{rvec}{1.5}
pgfmathsetmacro{thetavec}{40}
pgfmathsetmacro{phivec}{60}
tdplotsetcoord{P}{rvec}{thetavec}{phivec}
node[anchor=south west,color=red] at (P) {};
draw[-stealth,color=red,very thick] (O) -- (P);

begin{scope}[canvas is xz plane at y=0]
node[ellipse,fill=gray,fill opacity=0.3,draw,minimum width=2cm,minimum height=1cm,rotate=90] (elliL) at (0,0) {};
end{scope}
end{tikzpicture}
end{document}


enter image description here










share|improve this question


























    up vote
    3
    down vote

    favorite












    I made the following ellipse in Inkscape



    enter image description here



    But I would like to draw it within TikZ environment.My final goal is to put this ellipse inside a coordinate system. Using the image from Inkscape, here is my try



    documentclass[tikz,border=3.14mm]{standalone}
    usepackage{tikz-3dplot}
    usetikzlibrary{3d,shapes.geometric,shadows.blur}
    usepackage{graphicx}
    % small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
    makeatletter
    tikzoption{canvas is xy plane at z}{%
    deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
    deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
    deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
    tikz@canvas@is@plane}
    makeatother
    begin{document}
    tdplotsetmaincoords{60}{130}
    begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
    coordinate (O) at (0,0,0);
    draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
    draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
    draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
    draw[dashed] (O) -- (-1.2,0,0);

    pgfmathsetmacro{rvec}{1.5}
    pgfmathsetmacro{thetavec}{40}
    pgfmathsetmacro{phivec}{60}
    tdplotsetcoord{P}{rvec}{thetavec}{phivec}
    node[anchor=south west,color=red] at (P) {$B$};
    draw[-stealth,color=red,very thick] (O) -- (P);

    begin{scope}[canvas is yz plane at x=0]
    node (elliL) at (0,0) {includegraphics[width=.1textwidth]{image.eps}};
    end{scope}
    end{tikzpicture}
    end{document}


    enter image description here



    Using Tikz my best attempt was



     documentclass[tikz,border=3.14mm]{standalone}
    usepackage{tikz-3dplot}
    usetikzlibrary{3d,shapes.geometric,shadows.blur}
    usepackage{graphicx}
    % small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
    makeatletter
    tikzoption{canvas is xy plane at z}{%
    deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
    deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
    deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
    tikz@canvas@is@plane}
    makeatother
    begin{document}
    tdplotsetmaincoords{60}{130}
    begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
    coordinate (O) at (0,0,0);
    draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
    draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
    draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
    draw[dashed] (O) -- (-1.2,0,0);

    pgfmathsetmacro{rvec}{1.5}
    pgfmathsetmacro{thetavec}{40}
    pgfmathsetmacro{phivec}{60}
    tdplotsetcoord{P}{rvec}{thetavec}{phivec}
    node[anchor=south west,color=red] at (P) {};
    draw[-stealth,color=red,very thick] (O) -- (P);

    begin{scope}[canvas is xz plane at y=0]
    node[ellipse,fill=gray,fill opacity=0.3,draw,minimum width=2cm,minimum height=1cm,rotate=90] (elliL) at (0,0) {};
    end{scope}
    end{tikzpicture}
    end{document}


    enter image description here










    share|improve this question
























      up vote
      3
      down vote

      favorite









      up vote
      3
      down vote

      favorite











      I made the following ellipse in Inkscape



      enter image description here



      But I would like to draw it within TikZ environment.My final goal is to put this ellipse inside a coordinate system. Using the image from Inkscape, here is my try



      documentclass[tikz,border=3.14mm]{standalone}
      usepackage{tikz-3dplot}
      usetikzlibrary{3d,shapes.geometric,shadows.blur}
      usepackage{graphicx}
      % small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
      makeatletter
      tikzoption{canvas is xy plane at z}{%
      deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
      deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
      deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
      tikz@canvas@is@plane}
      makeatother
      begin{document}
      tdplotsetmaincoords{60}{130}
      begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
      coordinate (O) at (0,0,0);
      draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
      draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
      draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
      draw[dashed] (O) -- (-1.2,0,0);

      pgfmathsetmacro{rvec}{1.5}
      pgfmathsetmacro{thetavec}{40}
      pgfmathsetmacro{phivec}{60}
      tdplotsetcoord{P}{rvec}{thetavec}{phivec}
      node[anchor=south west,color=red] at (P) {$B$};
      draw[-stealth,color=red,very thick] (O) -- (P);

      begin{scope}[canvas is yz plane at x=0]
      node (elliL) at (0,0) {includegraphics[width=.1textwidth]{image.eps}};
      end{scope}
      end{tikzpicture}
      end{document}


      enter image description here



      Using Tikz my best attempt was



       documentclass[tikz,border=3.14mm]{standalone}
      usepackage{tikz-3dplot}
      usetikzlibrary{3d,shapes.geometric,shadows.blur}
      usepackage{graphicx}
      % small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
      makeatletter
      tikzoption{canvas is xy plane at z}{%
      deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
      deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
      deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
      tikz@canvas@is@plane}
      makeatother
      begin{document}
      tdplotsetmaincoords{60}{130}
      begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
      coordinate (O) at (0,0,0);
      draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
      draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
      draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
      draw[dashed] (O) -- (-1.2,0,0);

      pgfmathsetmacro{rvec}{1.5}
      pgfmathsetmacro{thetavec}{40}
      pgfmathsetmacro{phivec}{60}
      tdplotsetcoord{P}{rvec}{thetavec}{phivec}
      node[anchor=south west,color=red] at (P) {};
      draw[-stealth,color=red,very thick] (O) -- (P);

      begin{scope}[canvas is xz plane at y=0]
      node[ellipse,fill=gray,fill opacity=0.3,draw,minimum width=2cm,minimum height=1cm,rotate=90] (elliL) at (0,0) {};
      end{scope}
      end{tikzpicture}
      end{document}


      enter image description here










      share|improve this question













      I made the following ellipse in Inkscape



      enter image description here



      But I would like to draw it within TikZ environment.My final goal is to put this ellipse inside a coordinate system. Using the image from Inkscape, here is my try



      documentclass[tikz,border=3.14mm]{standalone}
      usepackage{tikz-3dplot}
      usetikzlibrary{3d,shapes.geometric,shadows.blur}
      usepackage{graphicx}
      % small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
      makeatletter
      tikzoption{canvas is xy plane at z}{%
      deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
      deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
      deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
      tikz@canvas@is@plane}
      makeatother
      begin{document}
      tdplotsetmaincoords{60}{130}
      begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
      coordinate (O) at (0,0,0);
      draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
      draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
      draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
      draw[dashed] (O) -- (-1.2,0,0);

      pgfmathsetmacro{rvec}{1.5}
      pgfmathsetmacro{thetavec}{40}
      pgfmathsetmacro{phivec}{60}
      tdplotsetcoord{P}{rvec}{thetavec}{phivec}
      node[anchor=south west,color=red] at (P) {$B$};
      draw[-stealth,color=red,very thick] (O) -- (P);

      begin{scope}[canvas is yz plane at x=0]
      node (elliL) at (0,0) {includegraphics[width=.1textwidth]{image.eps}};
      end{scope}
      end{tikzpicture}
      end{document}


      enter image description here



      Using Tikz my best attempt was



       documentclass[tikz,border=3.14mm]{standalone}
      usepackage{tikz-3dplot}
      usetikzlibrary{3d,shapes.geometric,shadows.blur}
      usepackage{graphicx}
      % small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
      makeatletter
      tikzoption{canvas is xy plane at z}{%
      deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
      deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
      deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
      tikz@canvas@is@plane}
      makeatother
      begin{document}
      tdplotsetmaincoords{60}{130}
      begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
      coordinate (O) at (0,0,0);
      draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
      draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
      draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
      draw[dashed] (O) -- (-1.2,0,0);

      pgfmathsetmacro{rvec}{1.5}
      pgfmathsetmacro{thetavec}{40}
      pgfmathsetmacro{phivec}{60}
      tdplotsetcoord{P}{rvec}{thetavec}{phivec}
      node[anchor=south west,color=red] at (P) {};
      draw[-stealth,color=red,very thick] (O) -- (P);

      begin{scope}[canvas is xz plane at y=0]
      node[ellipse,fill=gray,fill opacity=0.3,draw,minimum width=2cm,minimum height=1cm,rotate=90] (elliL) at (0,0) {};
      end{scope}
      end{tikzpicture}
      end{document}


      enter image description here







      tikz-pgf






      share|improve this question













      share|improve this question











      share|improve this question




      share|improve this question










      asked 6 hours ago









      Dinesh Shankar

      1675




      1675






















          2 Answers
          2






          active

          oldest

          votes

















          up vote
          4
          down vote













          tikz has ellipse shape, so you can use it with desired x radius and y radius.



          documentclass[tikz,border=3.14mm]{standalone}
          usepackage{tikz-3dplot}
          usetikzlibrary{3d,shapes.geometric,shadows.blur}
          usepackage{graphicx}
          % small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
          makeatletter
          tikzoption{canvas is xy plane at z}{%
          deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
          deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
          deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
          tikz@canvas@is@plane}
          makeatother
          begin{document}
          tdplotsetmaincoords{60}{130}
          begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
          begin{scope}%[canvas is yz plane at x=0]
          % node (elliL) at (0,0) {includegraphics[width=.1textwidth]{image}};
          draw [fill=gray!40, gray!40] (0,0) ellipse [x radius=5pt, y radius=11pt];
          draw [gray] (0,0) ellipse [x radius=2pt, y radius=11pt,];
          draw [gray] (0,0) ellipse [x radius=5pt, y radius=2pt,];
          end{scope}
          coordinate (O) at (0,0,0);
          draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
          draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
          draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
          draw[dashed] (O) -- (-1.2,0,0);

          pgfmathsetmacro{rvec}{1.5}
          pgfmathsetmacro{thetavec}{40}
          pgfmathsetmacro{phivec}{60}
          tdplotsetcoord{P}{rvec}{thetavec}{phivec}
          node[anchor=south west,color=red] at (P) {$B$};
          draw[-stealth,color=red,very thick] (O) -- (P);
          end{tikzpicture}
          end{document}


          enter image description here






          share|improve this answer




























            up vote
            3
            down vote













            This problem is actually less innocent than it might seem. The visible part of the ellipse is not obtained by just drawing an ellipse of the dimensions of the ellipsoid in the screen coordinates or, say, the xy plane. The problem as AFAIK only been used for the sphere, see e.g. the nice macros by Alain Matthes provided for a sphere and, in particular, this great answer by Fritz. Let me start by providing a brute force way to shade the relevant area.



            documentclass[tikz,border=3.14mm]{standalone}
            usepackage{tikz-3dplot}
            begin{document}
            tdplotsetmaincoords{60}{130}
            begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
            coordinate (O) at (0,0,0);
            draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
            draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
            draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
            draw[dashed] (O) -- (-1.2,0,0);
            pgfmathsetmacro{mya}{0.4}
            pgfmathsetmacro{myb}{0.8}
            % lines in the background
            draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
            draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
            draw[gray,dashed] plot[variable=x,domain=tdplotmainphi:tdplotmainphi+180,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
            % fill
            pgfmathtruncatemacro{Xstart}{tdplotmainphi-180}
            pgfmathtruncatemacro{DeltaX}{10}
            pgfmathtruncatemacro{Xnext}{Xstart+DeltaX}
            pgfmathtruncatemacro{Xend}{tdplotmainphi+180}
            begin{scope}[transparency group,opacity=0.5]
            foreach X in {Xstart,Xnext,...,Xend}
            {tdplotsetrotatedcoords{0}{0}{X}
            begin{scope}[tdplot_rotated_coords]
            path[fill=gray!40] plot[variable=x,domain=-90:90,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
            end{scope}}
            end{scope}
            % lines in the foreground
            draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
            draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
            draw[gray] plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
            % redraw "visible" part of the axes
            draw[thick,->] (mya,0,0) -- (1.2,0,0);
            draw[thick,->] (0,mya,0) -- (0,1.2,0);
            draw[thick,->] (0,0,myb) -- (0,0,1.2);
            pgfmathsetmacro{rvec}{1.5}
            pgfmathsetmacro{thetavec}{40}
            pgfmathsetmacro{phivec}{60}
            tdplotsetcoord{P}{rvec}{thetavec}{phivec}
            node[anchor=south west,color=red] at (P) {};
            draw[-stealth,color=red,very thick] (O) -- (P);
            end{tikzpicture}
            end{document}


            A somewhat more analytic variant thereof is



            documentclass[tikz,border=3.14mm]{standalone}
            usepackage{tikz-3dplot}
            usetikzlibrary{intersections,backgrounds}
            makeatletter
            %from https://tex.stackexchange.com/a/375604/121799
            %along x axis
            define@key{x sphericalkeys}{radius}{defmyradius{#1}}
            define@key{x sphericalkeys}{theta}{defmytheta{#1}}
            define@key{x sphericalkeys}{phi}{defmyphi{#1}}
            tikzdeclarecoordinatesystem{x spherical}{% %%%rotation around x
            setkeys{x sphericalkeys}{#1}%
            pgfpointxyz{myradius*cos(mytheta)}{myradius*sin(mytheta)*cos(myphi)}{myradius*sin(mytheta)*sin(myphi)}}

            %along y axis
            define@key{y sphericalkeys}{radius}{defmyradius{#1}}
            define@key{y sphericalkeys}{theta}{defmytheta{#1}}
            define@key{y sphericalkeys}{phi}{defmyphi{#1}}
            tikzdeclarecoordinatesystem{y spherical}{% %%%rotation around x
            setkeys{y sphericalkeys}{#1}%
            pgfpointxyz{myradius*sin(mytheta)*cos(myphi)}{myradius*cos(mytheta)}{myradius*sin(mytheta)*sin(myphi)}}

            %along z axis
            define@key{z sphericalkeys}{radius}{defmyradius{#1}}
            define@key{z sphericalkeys}{theta}{defmytheta{#1}}
            define@key{z sphericalkeys}{phi}{defmyphi{#1}}
            tikzdeclarecoordinatesystem{z spherical}{% %%%rotation around x
            setkeys{z sphericalkeys}{#1}%
            pgfpointxyz{myradius*sin(mytheta)*cos(myphi)}{myradius*sin(mytheta)*sin(myphi)}{myradius*cos(mytheta)}}


            makeatother % https://tex.stackexchange.com/a/438695/121799

            % definitions to make your life easier
            tikzset{rotate axes about y axis/.code={
            path (y spherical cs:radius=1,theta=90,phi=0+#1) coordinate(xpp)
            (y spherical cs:radius=1,theta=00,phi=90+#1) coordinate(ypp)
            (y spherical cs:radius=1,theta=90,phi=90+#1) coordinate(zpp);
            },rotate axes about x axis/.code={
            path (x spherical cs:radius=1,theta=00,phi=90+#1) coordinate(xpp)
            (x spherical cs:radius=1,theta=90,phi=00+#1) coordinate(ypp)
            (x spherical cs:radius=1,theta=90,phi=90+#1) coordinate(zpp);
            },
            pitch/.style={rotate axes about y axis=#1,x={(xpp)},y={(ypp)},z={(zpp)}},
            roll/.style={rotate axes about x axis=#1,x={(xpp)},y={(ypp)},z={(zpp)}}
            }
            begin{document}
            tdplotsetmaincoords{60}{130}
            begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
            coordinate (O) at (0,0,0);
            draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
            draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
            draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
            draw[dashed] (O) -- (-1.2,0,0);
            pgfmathsetmacro{mya}{0.4}
            pgfmathsetmacro{myb}{0.8}
            % lines in the background
            draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
            draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
            draw[gray,dashed] plot[variable=x,domain=tdplotmainphi:tdplotmainphi+180,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
            % fill
            tdplotsetrotatedcoords{0}{0}{tdplotmainphi}
            begin{scope}[tdplot_rotated_coords]
            begin{scope}[roll=-5]
            fill[gray!40,opacity=0.6] plot[variable=x,domain=0:360,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
            end{scope}
            end{scope}
            % lines in the foreground
            draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
            draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
            draw[gray] plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
            % redraw "visible" part of the axes
            draw[thick,->] (mya,0,0) -- (1.2,0,0);
            draw[thick,->] (0,mya,0) -- (0,1.2,0);
            draw[thick,->] (0,0,myb) -- (0,0,1.2);
            pgfmathsetmacro{rvec}{1.5}
            pgfmathsetmacro{thetavec}{40}
            pgfmathsetmacro{phivec}{60}
            tdplotsetrotatedcoords{0}{0}{phivec}
            begin{scope}[tdplot_rotated_coords]
            path[name path=elli] plot[variable=x,domain=0:360,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
            end{scope}
            tdplotsetcoord{P}{rvec}{thetavec}{phivec}
            node[anchor=south west,color=red] at (P) {P};
            begin{scope}[on background layer]
            draw[-stealth,color=red,very thick,name path global=P] (O) -- (P);
            end{scope}
            draw[-stealth,color=red,very thick,name intersections={of=P and elli}]
            (intersection-1) -- (P);
            end{tikzpicture}
            end{document}


            enter image description here



            This is an ellipsoid in perspective, see e.g.



            enter image description here



            to note that you view on the ellipsoid from the top, as dictated by the angle theta=60 in tdplotsetmaincoords{60}{130}.






            share|improve this answer























              Your Answer








              StackExchange.ready(function() {
              var channelOptions = {
              tags: "".split(" "),
              id: "85"
              };
              initTagRenderer("".split(" "), "".split(" "), channelOptions);

              StackExchange.using("externalEditor", function() {
              // Have to fire editor after snippets, if snippets enabled
              if (StackExchange.settings.snippets.snippetsEnabled) {
              StackExchange.using("snippets", function() {
              createEditor();
              });
              }
              else {
              createEditor();
              }
              });

              function createEditor() {
              StackExchange.prepareEditor({
              heartbeatType: 'answer',
              convertImagesToLinks: false,
              noModals: true,
              showLowRepImageUploadWarning: true,
              reputationToPostImages: null,
              bindNavPrevention: true,
              postfix: "",
              imageUploader: {
              brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
              contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
              allowUrls: true
              },
              onDemand: true,
              discardSelector: ".discard-answer"
              ,immediatelyShowMarkdownHelp:true
              });


              }
              });














              draft saved

              draft discarded


















              StackExchange.ready(
              function () {
              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f464580%2fdrawing-a-perspective-ellipse-with-tikz%23new-answer', 'question_page');
              }
              );

              Post as a guest















              Required, but never shown

























              2 Answers
              2






              active

              oldest

              votes








              2 Answers
              2






              active

              oldest

              votes









              active

              oldest

              votes






              active

              oldest

              votes








              up vote
              4
              down vote













              tikz has ellipse shape, so you can use it with desired x radius and y radius.



              documentclass[tikz,border=3.14mm]{standalone}
              usepackage{tikz-3dplot}
              usetikzlibrary{3d,shapes.geometric,shadows.blur}
              usepackage{graphicx}
              % small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
              makeatletter
              tikzoption{canvas is xy plane at z}{%
              deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
              deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
              deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
              tikz@canvas@is@plane}
              makeatother
              begin{document}
              tdplotsetmaincoords{60}{130}
              begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
              begin{scope}%[canvas is yz plane at x=0]
              % node (elliL) at (0,0) {includegraphics[width=.1textwidth]{image}};
              draw [fill=gray!40, gray!40] (0,0) ellipse [x radius=5pt, y radius=11pt];
              draw [gray] (0,0) ellipse [x radius=2pt, y radius=11pt,];
              draw [gray] (0,0) ellipse [x radius=5pt, y radius=2pt,];
              end{scope}
              coordinate (O) at (0,0,0);
              draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
              draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
              draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
              draw[dashed] (O) -- (-1.2,0,0);

              pgfmathsetmacro{rvec}{1.5}
              pgfmathsetmacro{thetavec}{40}
              pgfmathsetmacro{phivec}{60}
              tdplotsetcoord{P}{rvec}{thetavec}{phivec}
              node[anchor=south west,color=red] at (P) {$B$};
              draw[-stealth,color=red,very thick] (O) -- (P);
              end{tikzpicture}
              end{document}


              enter image description here






              share|improve this answer

























                up vote
                4
                down vote













                tikz has ellipse shape, so you can use it with desired x radius and y radius.



                documentclass[tikz,border=3.14mm]{standalone}
                usepackage{tikz-3dplot}
                usetikzlibrary{3d,shapes.geometric,shadows.blur}
                usepackage{graphicx}
                % small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
                makeatletter
                tikzoption{canvas is xy plane at z}{%
                deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
                deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
                deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
                tikz@canvas@is@plane}
                makeatother
                begin{document}
                tdplotsetmaincoords{60}{130}
                begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
                begin{scope}%[canvas is yz plane at x=0]
                % node (elliL) at (0,0) {includegraphics[width=.1textwidth]{image}};
                draw [fill=gray!40, gray!40] (0,0) ellipse [x radius=5pt, y radius=11pt];
                draw [gray] (0,0) ellipse [x radius=2pt, y radius=11pt,];
                draw [gray] (0,0) ellipse [x radius=5pt, y radius=2pt,];
                end{scope}
                coordinate (O) at (0,0,0);
                draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
                draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
                draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
                draw[dashed] (O) -- (-1.2,0,0);

                pgfmathsetmacro{rvec}{1.5}
                pgfmathsetmacro{thetavec}{40}
                pgfmathsetmacro{phivec}{60}
                tdplotsetcoord{P}{rvec}{thetavec}{phivec}
                node[anchor=south west,color=red] at (P) {$B$};
                draw[-stealth,color=red,very thick] (O) -- (P);
                end{tikzpicture}
                end{document}


                enter image description here






                share|improve this answer























                  up vote
                  4
                  down vote










                  up vote
                  4
                  down vote









                  tikz has ellipse shape, so you can use it with desired x radius and y radius.



                  documentclass[tikz,border=3.14mm]{standalone}
                  usepackage{tikz-3dplot}
                  usetikzlibrary{3d,shapes.geometric,shadows.blur}
                  usepackage{graphicx}
                  % small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
                  makeatletter
                  tikzoption{canvas is xy plane at z}{%
                  deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
                  deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
                  deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
                  tikz@canvas@is@plane}
                  makeatother
                  begin{document}
                  tdplotsetmaincoords{60}{130}
                  begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
                  begin{scope}%[canvas is yz plane at x=0]
                  % node (elliL) at (0,0) {includegraphics[width=.1textwidth]{image}};
                  draw [fill=gray!40, gray!40] (0,0) ellipse [x radius=5pt, y radius=11pt];
                  draw [gray] (0,0) ellipse [x radius=2pt, y radius=11pt,];
                  draw [gray] (0,0) ellipse [x radius=5pt, y radius=2pt,];
                  end{scope}
                  coordinate (O) at (0,0,0);
                  draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
                  draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
                  draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
                  draw[dashed] (O) -- (-1.2,0,0);

                  pgfmathsetmacro{rvec}{1.5}
                  pgfmathsetmacro{thetavec}{40}
                  pgfmathsetmacro{phivec}{60}
                  tdplotsetcoord{P}{rvec}{thetavec}{phivec}
                  node[anchor=south west,color=red] at (P) {$B$};
                  draw[-stealth,color=red,very thick] (O) -- (P);
                  end{tikzpicture}
                  end{document}


                  enter image description here






                  share|improve this answer












                  tikz has ellipse shape, so you can use it with desired x radius and y radius.



                  documentclass[tikz,border=3.14mm]{standalone}
                  usepackage{tikz-3dplot}
                  usetikzlibrary{3d,shapes.geometric,shadows.blur}
                  usepackage{graphicx}
                  % small fix for canvas is xy plane at z % https://tex.stackexchange.com/a/48776/121799
                  makeatletter
                  tikzoption{canvas is xy plane at z}{%
                  deftikz@plane@origin{pgfpointxyz{0}{0}{#1}}%
                  deftikz@plane@x{pgfpointxyz{1}{0}{#1}}%
                  deftikz@plane@y{pgfpointxyz{0}{1}{#1}}%
                  tikz@canvas@is@plane}
                  makeatother
                  begin{document}
                  tdplotsetmaincoords{60}{130}
                  begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
                  begin{scope}%[canvas is yz plane at x=0]
                  % node (elliL) at (0,0) {includegraphics[width=.1textwidth]{image}};
                  draw [fill=gray!40, gray!40] (0,0) ellipse [x radius=5pt, y radius=11pt];
                  draw [gray] (0,0) ellipse [x radius=2pt, y radius=11pt,];
                  draw [gray] (0,0) ellipse [x radius=5pt, y radius=2pt,];
                  end{scope}
                  coordinate (O) at (0,0,0);
                  draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
                  draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
                  draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
                  draw[dashed] (O) -- (-1.2,0,0);

                  pgfmathsetmacro{rvec}{1.5}
                  pgfmathsetmacro{thetavec}{40}
                  pgfmathsetmacro{phivec}{60}
                  tdplotsetcoord{P}{rvec}{thetavec}{phivec}
                  node[anchor=south west,color=red] at (P) {$B$};
                  draw[-stealth,color=red,very thick] (O) -- (P);
                  end{tikzpicture}
                  end{document}


                  enter image description here







                  share|improve this answer












                  share|improve this answer



                  share|improve this answer










                  answered 6 hours ago









                  javadr

                  1,428313




                  1,428313






















                      up vote
                      3
                      down vote













                      This problem is actually less innocent than it might seem. The visible part of the ellipse is not obtained by just drawing an ellipse of the dimensions of the ellipsoid in the screen coordinates or, say, the xy plane. The problem as AFAIK only been used for the sphere, see e.g. the nice macros by Alain Matthes provided for a sphere and, in particular, this great answer by Fritz. Let me start by providing a brute force way to shade the relevant area.



                      documentclass[tikz,border=3.14mm]{standalone}
                      usepackage{tikz-3dplot}
                      begin{document}
                      tdplotsetmaincoords{60}{130}
                      begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
                      coordinate (O) at (0,0,0);
                      draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
                      draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
                      draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
                      draw[dashed] (O) -- (-1.2,0,0);
                      pgfmathsetmacro{mya}{0.4}
                      pgfmathsetmacro{myb}{0.8}
                      % lines in the background
                      draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                      draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                      draw[gray,dashed] plot[variable=x,domain=tdplotmainphi:tdplotmainphi+180,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                      % fill
                      pgfmathtruncatemacro{Xstart}{tdplotmainphi-180}
                      pgfmathtruncatemacro{DeltaX}{10}
                      pgfmathtruncatemacro{Xnext}{Xstart+DeltaX}
                      pgfmathtruncatemacro{Xend}{tdplotmainphi+180}
                      begin{scope}[transparency group,opacity=0.5]
                      foreach X in {Xstart,Xnext,...,Xend}
                      {tdplotsetrotatedcoords{0}{0}{X}
                      begin{scope}[tdplot_rotated_coords]
                      path[fill=gray!40] plot[variable=x,domain=-90:90,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
                      end{scope}}
                      end{scope}
                      % lines in the foreground
                      draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                      draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                      draw[gray] plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                      % redraw "visible" part of the axes
                      draw[thick,->] (mya,0,0) -- (1.2,0,0);
                      draw[thick,->] (0,mya,0) -- (0,1.2,0);
                      draw[thick,->] (0,0,myb) -- (0,0,1.2);
                      pgfmathsetmacro{rvec}{1.5}
                      pgfmathsetmacro{thetavec}{40}
                      pgfmathsetmacro{phivec}{60}
                      tdplotsetcoord{P}{rvec}{thetavec}{phivec}
                      node[anchor=south west,color=red] at (P) {};
                      draw[-stealth,color=red,very thick] (O) -- (P);
                      end{tikzpicture}
                      end{document}


                      A somewhat more analytic variant thereof is



                      documentclass[tikz,border=3.14mm]{standalone}
                      usepackage{tikz-3dplot}
                      usetikzlibrary{intersections,backgrounds}
                      makeatletter
                      %from https://tex.stackexchange.com/a/375604/121799
                      %along x axis
                      define@key{x sphericalkeys}{radius}{defmyradius{#1}}
                      define@key{x sphericalkeys}{theta}{defmytheta{#1}}
                      define@key{x sphericalkeys}{phi}{defmyphi{#1}}
                      tikzdeclarecoordinatesystem{x spherical}{% %%%rotation around x
                      setkeys{x sphericalkeys}{#1}%
                      pgfpointxyz{myradius*cos(mytheta)}{myradius*sin(mytheta)*cos(myphi)}{myradius*sin(mytheta)*sin(myphi)}}

                      %along y axis
                      define@key{y sphericalkeys}{radius}{defmyradius{#1}}
                      define@key{y sphericalkeys}{theta}{defmytheta{#1}}
                      define@key{y sphericalkeys}{phi}{defmyphi{#1}}
                      tikzdeclarecoordinatesystem{y spherical}{% %%%rotation around x
                      setkeys{y sphericalkeys}{#1}%
                      pgfpointxyz{myradius*sin(mytheta)*cos(myphi)}{myradius*cos(mytheta)}{myradius*sin(mytheta)*sin(myphi)}}

                      %along z axis
                      define@key{z sphericalkeys}{radius}{defmyradius{#1}}
                      define@key{z sphericalkeys}{theta}{defmytheta{#1}}
                      define@key{z sphericalkeys}{phi}{defmyphi{#1}}
                      tikzdeclarecoordinatesystem{z spherical}{% %%%rotation around x
                      setkeys{z sphericalkeys}{#1}%
                      pgfpointxyz{myradius*sin(mytheta)*cos(myphi)}{myradius*sin(mytheta)*sin(myphi)}{myradius*cos(mytheta)}}


                      makeatother % https://tex.stackexchange.com/a/438695/121799

                      % definitions to make your life easier
                      tikzset{rotate axes about y axis/.code={
                      path (y spherical cs:radius=1,theta=90,phi=0+#1) coordinate(xpp)
                      (y spherical cs:radius=1,theta=00,phi=90+#1) coordinate(ypp)
                      (y spherical cs:radius=1,theta=90,phi=90+#1) coordinate(zpp);
                      },rotate axes about x axis/.code={
                      path (x spherical cs:radius=1,theta=00,phi=90+#1) coordinate(xpp)
                      (x spherical cs:radius=1,theta=90,phi=00+#1) coordinate(ypp)
                      (x spherical cs:radius=1,theta=90,phi=90+#1) coordinate(zpp);
                      },
                      pitch/.style={rotate axes about y axis=#1,x={(xpp)},y={(ypp)},z={(zpp)}},
                      roll/.style={rotate axes about x axis=#1,x={(xpp)},y={(ypp)},z={(zpp)}}
                      }
                      begin{document}
                      tdplotsetmaincoords{60}{130}
                      begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
                      coordinate (O) at (0,0,0);
                      draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
                      draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
                      draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
                      draw[dashed] (O) -- (-1.2,0,0);
                      pgfmathsetmacro{mya}{0.4}
                      pgfmathsetmacro{myb}{0.8}
                      % lines in the background
                      draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                      draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                      draw[gray,dashed] plot[variable=x,domain=tdplotmainphi:tdplotmainphi+180,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                      % fill
                      tdplotsetrotatedcoords{0}{0}{tdplotmainphi}
                      begin{scope}[tdplot_rotated_coords]
                      begin{scope}[roll=-5]
                      fill[gray!40,opacity=0.6] plot[variable=x,domain=0:360,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
                      end{scope}
                      end{scope}
                      % lines in the foreground
                      draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                      draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                      draw[gray] plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                      % redraw "visible" part of the axes
                      draw[thick,->] (mya,0,0) -- (1.2,0,0);
                      draw[thick,->] (0,mya,0) -- (0,1.2,0);
                      draw[thick,->] (0,0,myb) -- (0,0,1.2);
                      pgfmathsetmacro{rvec}{1.5}
                      pgfmathsetmacro{thetavec}{40}
                      pgfmathsetmacro{phivec}{60}
                      tdplotsetrotatedcoords{0}{0}{phivec}
                      begin{scope}[tdplot_rotated_coords]
                      path[name path=elli] plot[variable=x,domain=0:360,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
                      end{scope}
                      tdplotsetcoord{P}{rvec}{thetavec}{phivec}
                      node[anchor=south west,color=red] at (P) {P};
                      begin{scope}[on background layer]
                      draw[-stealth,color=red,very thick,name path global=P] (O) -- (P);
                      end{scope}
                      draw[-stealth,color=red,very thick,name intersections={of=P and elli}]
                      (intersection-1) -- (P);
                      end{tikzpicture}
                      end{document}


                      enter image description here



                      This is an ellipsoid in perspective, see e.g.



                      enter image description here



                      to note that you view on the ellipsoid from the top, as dictated by the angle theta=60 in tdplotsetmaincoords{60}{130}.






                      share|improve this answer



























                        up vote
                        3
                        down vote













                        This problem is actually less innocent than it might seem. The visible part of the ellipse is not obtained by just drawing an ellipse of the dimensions of the ellipsoid in the screen coordinates or, say, the xy plane. The problem as AFAIK only been used for the sphere, see e.g. the nice macros by Alain Matthes provided for a sphere and, in particular, this great answer by Fritz. Let me start by providing a brute force way to shade the relevant area.



                        documentclass[tikz,border=3.14mm]{standalone}
                        usepackage{tikz-3dplot}
                        begin{document}
                        tdplotsetmaincoords{60}{130}
                        begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
                        coordinate (O) at (0,0,0);
                        draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
                        draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
                        draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
                        draw[dashed] (O) -- (-1.2,0,0);
                        pgfmathsetmacro{mya}{0.4}
                        pgfmathsetmacro{myb}{0.8}
                        % lines in the background
                        draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                        draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                        draw[gray,dashed] plot[variable=x,domain=tdplotmainphi:tdplotmainphi+180,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                        % fill
                        pgfmathtruncatemacro{Xstart}{tdplotmainphi-180}
                        pgfmathtruncatemacro{DeltaX}{10}
                        pgfmathtruncatemacro{Xnext}{Xstart+DeltaX}
                        pgfmathtruncatemacro{Xend}{tdplotmainphi+180}
                        begin{scope}[transparency group,opacity=0.5]
                        foreach X in {Xstart,Xnext,...,Xend}
                        {tdplotsetrotatedcoords{0}{0}{X}
                        begin{scope}[tdplot_rotated_coords]
                        path[fill=gray!40] plot[variable=x,domain=-90:90,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
                        end{scope}}
                        end{scope}
                        % lines in the foreground
                        draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                        draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                        draw[gray] plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                        % redraw "visible" part of the axes
                        draw[thick,->] (mya,0,0) -- (1.2,0,0);
                        draw[thick,->] (0,mya,0) -- (0,1.2,0);
                        draw[thick,->] (0,0,myb) -- (0,0,1.2);
                        pgfmathsetmacro{rvec}{1.5}
                        pgfmathsetmacro{thetavec}{40}
                        pgfmathsetmacro{phivec}{60}
                        tdplotsetcoord{P}{rvec}{thetavec}{phivec}
                        node[anchor=south west,color=red] at (P) {};
                        draw[-stealth,color=red,very thick] (O) -- (P);
                        end{tikzpicture}
                        end{document}


                        A somewhat more analytic variant thereof is



                        documentclass[tikz,border=3.14mm]{standalone}
                        usepackage{tikz-3dplot}
                        usetikzlibrary{intersections,backgrounds}
                        makeatletter
                        %from https://tex.stackexchange.com/a/375604/121799
                        %along x axis
                        define@key{x sphericalkeys}{radius}{defmyradius{#1}}
                        define@key{x sphericalkeys}{theta}{defmytheta{#1}}
                        define@key{x sphericalkeys}{phi}{defmyphi{#1}}
                        tikzdeclarecoordinatesystem{x spherical}{% %%%rotation around x
                        setkeys{x sphericalkeys}{#1}%
                        pgfpointxyz{myradius*cos(mytheta)}{myradius*sin(mytheta)*cos(myphi)}{myradius*sin(mytheta)*sin(myphi)}}

                        %along y axis
                        define@key{y sphericalkeys}{radius}{defmyradius{#1}}
                        define@key{y sphericalkeys}{theta}{defmytheta{#1}}
                        define@key{y sphericalkeys}{phi}{defmyphi{#1}}
                        tikzdeclarecoordinatesystem{y spherical}{% %%%rotation around x
                        setkeys{y sphericalkeys}{#1}%
                        pgfpointxyz{myradius*sin(mytheta)*cos(myphi)}{myradius*cos(mytheta)}{myradius*sin(mytheta)*sin(myphi)}}

                        %along z axis
                        define@key{z sphericalkeys}{radius}{defmyradius{#1}}
                        define@key{z sphericalkeys}{theta}{defmytheta{#1}}
                        define@key{z sphericalkeys}{phi}{defmyphi{#1}}
                        tikzdeclarecoordinatesystem{z spherical}{% %%%rotation around x
                        setkeys{z sphericalkeys}{#1}%
                        pgfpointxyz{myradius*sin(mytheta)*cos(myphi)}{myradius*sin(mytheta)*sin(myphi)}{myradius*cos(mytheta)}}


                        makeatother % https://tex.stackexchange.com/a/438695/121799

                        % definitions to make your life easier
                        tikzset{rotate axes about y axis/.code={
                        path (y spherical cs:radius=1,theta=90,phi=0+#1) coordinate(xpp)
                        (y spherical cs:radius=1,theta=00,phi=90+#1) coordinate(ypp)
                        (y spherical cs:radius=1,theta=90,phi=90+#1) coordinate(zpp);
                        },rotate axes about x axis/.code={
                        path (x spherical cs:radius=1,theta=00,phi=90+#1) coordinate(xpp)
                        (x spherical cs:radius=1,theta=90,phi=00+#1) coordinate(ypp)
                        (x spherical cs:radius=1,theta=90,phi=90+#1) coordinate(zpp);
                        },
                        pitch/.style={rotate axes about y axis=#1,x={(xpp)},y={(ypp)},z={(zpp)}},
                        roll/.style={rotate axes about x axis=#1,x={(xpp)},y={(ypp)},z={(zpp)}}
                        }
                        begin{document}
                        tdplotsetmaincoords{60}{130}
                        begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
                        coordinate (O) at (0,0,0);
                        draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
                        draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
                        draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
                        draw[dashed] (O) -- (-1.2,0,0);
                        pgfmathsetmacro{mya}{0.4}
                        pgfmathsetmacro{myb}{0.8}
                        % lines in the background
                        draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                        draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                        draw[gray,dashed] plot[variable=x,domain=tdplotmainphi:tdplotmainphi+180,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                        % fill
                        tdplotsetrotatedcoords{0}{0}{tdplotmainphi}
                        begin{scope}[tdplot_rotated_coords]
                        begin{scope}[roll=-5]
                        fill[gray!40,opacity=0.6] plot[variable=x,domain=0:360,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
                        end{scope}
                        end{scope}
                        % lines in the foreground
                        draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                        draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                        draw[gray] plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                        % redraw "visible" part of the axes
                        draw[thick,->] (mya,0,0) -- (1.2,0,0);
                        draw[thick,->] (0,mya,0) -- (0,1.2,0);
                        draw[thick,->] (0,0,myb) -- (0,0,1.2);
                        pgfmathsetmacro{rvec}{1.5}
                        pgfmathsetmacro{thetavec}{40}
                        pgfmathsetmacro{phivec}{60}
                        tdplotsetrotatedcoords{0}{0}{phivec}
                        begin{scope}[tdplot_rotated_coords]
                        path[name path=elli] plot[variable=x,domain=0:360,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
                        end{scope}
                        tdplotsetcoord{P}{rvec}{thetavec}{phivec}
                        node[anchor=south west,color=red] at (P) {P};
                        begin{scope}[on background layer]
                        draw[-stealth,color=red,very thick,name path global=P] (O) -- (P);
                        end{scope}
                        draw[-stealth,color=red,very thick,name intersections={of=P and elli}]
                        (intersection-1) -- (P);
                        end{tikzpicture}
                        end{document}


                        enter image description here



                        This is an ellipsoid in perspective, see e.g.



                        enter image description here



                        to note that you view on the ellipsoid from the top, as dictated by the angle theta=60 in tdplotsetmaincoords{60}{130}.






                        share|improve this answer

























                          up vote
                          3
                          down vote










                          up vote
                          3
                          down vote









                          This problem is actually less innocent than it might seem. The visible part of the ellipse is not obtained by just drawing an ellipse of the dimensions of the ellipsoid in the screen coordinates or, say, the xy plane. The problem as AFAIK only been used for the sphere, see e.g. the nice macros by Alain Matthes provided for a sphere and, in particular, this great answer by Fritz. Let me start by providing a brute force way to shade the relevant area.



                          documentclass[tikz,border=3.14mm]{standalone}
                          usepackage{tikz-3dplot}
                          begin{document}
                          tdplotsetmaincoords{60}{130}
                          begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
                          coordinate (O) at (0,0,0);
                          draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
                          draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
                          draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
                          draw[dashed] (O) -- (-1.2,0,0);
                          pgfmathsetmacro{mya}{0.4}
                          pgfmathsetmacro{myb}{0.8}
                          % lines in the background
                          draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                          draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                          draw[gray,dashed] plot[variable=x,domain=tdplotmainphi:tdplotmainphi+180,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                          % fill
                          pgfmathtruncatemacro{Xstart}{tdplotmainphi-180}
                          pgfmathtruncatemacro{DeltaX}{10}
                          pgfmathtruncatemacro{Xnext}{Xstart+DeltaX}
                          pgfmathtruncatemacro{Xend}{tdplotmainphi+180}
                          begin{scope}[transparency group,opacity=0.5]
                          foreach X in {Xstart,Xnext,...,Xend}
                          {tdplotsetrotatedcoords{0}{0}{X}
                          begin{scope}[tdplot_rotated_coords]
                          path[fill=gray!40] plot[variable=x,domain=-90:90,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
                          end{scope}}
                          end{scope}
                          % lines in the foreground
                          draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                          draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                          draw[gray] plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                          % redraw "visible" part of the axes
                          draw[thick,->] (mya,0,0) -- (1.2,0,0);
                          draw[thick,->] (0,mya,0) -- (0,1.2,0);
                          draw[thick,->] (0,0,myb) -- (0,0,1.2);
                          pgfmathsetmacro{rvec}{1.5}
                          pgfmathsetmacro{thetavec}{40}
                          pgfmathsetmacro{phivec}{60}
                          tdplotsetcoord{P}{rvec}{thetavec}{phivec}
                          node[anchor=south west,color=red] at (P) {};
                          draw[-stealth,color=red,very thick] (O) -- (P);
                          end{tikzpicture}
                          end{document}


                          A somewhat more analytic variant thereof is



                          documentclass[tikz,border=3.14mm]{standalone}
                          usepackage{tikz-3dplot}
                          usetikzlibrary{intersections,backgrounds}
                          makeatletter
                          %from https://tex.stackexchange.com/a/375604/121799
                          %along x axis
                          define@key{x sphericalkeys}{radius}{defmyradius{#1}}
                          define@key{x sphericalkeys}{theta}{defmytheta{#1}}
                          define@key{x sphericalkeys}{phi}{defmyphi{#1}}
                          tikzdeclarecoordinatesystem{x spherical}{% %%%rotation around x
                          setkeys{x sphericalkeys}{#1}%
                          pgfpointxyz{myradius*cos(mytheta)}{myradius*sin(mytheta)*cos(myphi)}{myradius*sin(mytheta)*sin(myphi)}}

                          %along y axis
                          define@key{y sphericalkeys}{radius}{defmyradius{#1}}
                          define@key{y sphericalkeys}{theta}{defmytheta{#1}}
                          define@key{y sphericalkeys}{phi}{defmyphi{#1}}
                          tikzdeclarecoordinatesystem{y spherical}{% %%%rotation around x
                          setkeys{y sphericalkeys}{#1}%
                          pgfpointxyz{myradius*sin(mytheta)*cos(myphi)}{myradius*cos(mytheta)}{myradius*sin(mytheta)*sin(myphi)}}

                          %along z axis
                          define@key{z sphericalkeys}{radius}{defmyradius{#1}}
                          define@key{z sphericalkeys}{theta}{defmytheta{#1}}
                          define@key{z sphericalkeys}{phi}{defmyphi{#1}}
                          tikzdeclarecoordinatesystem{z spherical}{% %%%rotation around x
                          setkeys{z sphericalkeys}{#1}%
                          pgfpointxyz{myradius*sin(mytheta)*cos(myphi)}{myradius*sin(mytheta)*sin(myphi)}{myradius*cos(mytheta)}}


                          makeatother % https://tex.stackexchange.com/a/438695/121799

                          % definitions to make your life easier
                          tikzset{rotate axes about y axis/.code={
                          path (y spherical cs:radius=1,theta=90,phi=0+#1) coordinate(xpp)
                          (y spherical cs:radius=1,theta=00,phi=90+#1) coordinate(ypp)
                          (y spherical cs:radius=1,theta=90,phi=90+#1) coordinate(zpp);
                          },rotate axes about x axis/.code={
                          path (x spherical cs:radius=1,theta=00,phi=90+#1) coordinate(xpp)
                          (x spherical cs:radius=1,theta=90,phi=00+#1) coordinate(ypp)
                          (x spherical cs:radius=1,theta=90,phi=90+#1) coordinate(zpp);
                          },
                          pitch/.style={rotate axes about y axis=#1,x={(xpp)},y={(ypp)},z={(zpp)}},
                          roll/.style={rotate axes about x axis=#1,x={(xpp)},y={(ypp)},z={(zpp)}}
                          }
                          begin{document}
                          tdplotsetmaincoords{60}{130}
                          begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
                          coordinate (O) at (0,0,0);
                          draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
                          draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
                          draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
                          draw[dashed] (O) -- (-1.2,0,0);
                          pgfmathsetmacro{mya}{0.4}
                          pgfmathsetmacro{myb}{0.8}
                          % lines in the background
                          draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                          draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                          draw[gray,dashed] plot[variable=x,domain=tdplotmainphi:tdplotmainphi+180,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                          % fill
                          tdplotsetrotatedcoords{0}{0}{tdplotmainphi}
                          begin{scope}[tdplot_rotated_coords]
                          begin{scope}[roll=-5]
                          fill[gray!40,opacity=0.6] plot[variable=x,domain=0:360,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
                          end{scope}
                          end{scope}
                          % lines in the foreground
                          draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                          draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                          draw[gray] plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                          % redraw "visible" part of the axes
                          draw[thick,->] (mya,0,0) -- (1.2,0,0);
                          draw[thick,->] (0,mya,0) -- (0,1.2,0);
                          draw[thick,->] (0,0,myb) -- (0,0,1.2);
                          pgfmathsetmacro{rvec}{1.5}
                          pgfmathsetmacro{thetavec}{40}
                          pgfmathsetmacro{phivec}{60}
                          tdplotsetrotatedcoords{0}{0}{phivec}
                          begin{scope}[tdplot_rotated_coords]
                          path[name path=elli] plot[variable=x,domain=0:360,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
                          end{scope}
                          tdplotsetcoord{P}{rvec}{thetavec}{phivec}
                          node[anchor=south west,color=red] at (P) {P};
                          begin{scope}[on background layer]
                          draw[-stealth,color=red,very thick,name path global=P] (O) -- (P);
                          end{scope}
                          draw[-stealth,color=red,very thick,name intersections={of=P and elli}]
                          (intersection-1) -- (P);
                          end{tikzpicture}
                          end{document}


                          enter image description here



                          This is an ellipsoid in perspective, see e.g.



                          enter image description here



                          to note that you view on the ellipsoid from the top, as dictated by the angle theta=60 in tdplotsetmaincoords{60}{130}.






                          share|improve this answer














                          This problem is actually less innocent than it might seem. The visible part of the ellipse is not obtained by just drawing an ellipse of the dimensions of the ellipsoid in the screen coordinates or, say, the xy plane. The problem as AFAIK only been used for the sphere, see e.g. the nice macros by Alain Matthes provided for a sphere and, in particular, this great answer by Fritz. Let me start by providing a brute force way to shade the relevant area.



                          documentclass[tikz,border=3.14mm]{standalone}
                          usepackage{tikz-3dplot}
                          begin{document}
                          tdplotsetmaincoords{60}{130}
                          begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
                          coordinate (O) at (0,0,0);
                          draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
                          draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
                          draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
                          draw[dashed] (O) -- (-1.2,0,0);
                          pgfmathsetmacro{mya}{0.4}
                          pgfmathsetmacro{myb}{0.8}
                          % lines in the background
                          draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                          draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                          draw[gray,dashed] plot[variable=x,domain=tdplotmainphi:tdplotmainphi+180,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                          % fill
                          pgfmathtruncatemacro{Xstart}{tdplotmainphi-180}
                          pgfmathtruncatemacro{DeltaX}{10}
                          pgfmathtruncatemacro{Xnext}{Xstart+DeltaX}
                          pgfmathtruncatemacro{Xend}{tdplotmainphi+180}
                          begin{scope}[transparency group,opacity=0.5]
                          foreach X in {Xstart,Xnext,...,Xend}
                          {tdplotsetrotatedcoords{0}{0}{X}
                          begin{scope}[tdplot_rotated_coords]
                          path[fill=gray!40] plot[variable=x,domain=-90:90,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
                          end{scope}}
                          end{scope}
                          % lines in the foreground
                          draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                          draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                          draw[gray] plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                          % redraw "visible" part of the axes
                          draw[thick,->] (mya,0,0) -- (1.2,0,0);
                          draw[thick,->] (0,mya,0) -- (0,1.2,0);
                          draw[thick,->] (0,0,myb) -- (0,0,1.2);
                          pgfmathsetmacro{rvec}{1.5}
                          pgfmathsetmacro{thetavec}{40}
                          pgfmathsetmacro{phivec}{60}
                          tdplotsetcoord{P}{rvec}{thetavec}{phivec}
                          node[anchor=south west,color=red] at (P) {};
                          draw[-stealth,color=red,very thick] (O) -- (P);
                          end{tikzpicture}
                          end{document}


                          A somewhat more analytic variant thereof is



                          documentclass[tikz,border=3.14mm]{standalone}
                          usepackage{tikz-3dplot}
                          usetikzlibrary{intersections,backgrounds}
                          makeatletter
                          %from https://tex.stackexchange.com/a/375604/121799
                          %along x axis
                          define@key{x sphericalkeys}{radius}{defmyradius{#1}}
                          define@key{x sphericalkeys}{theta}{defmytheta{#1}}
                          define@key{x sphericalkeys}{phi}{defmyphi{#1}}
                          tikzdeclarecoordinatesystem{x spherical}{% %%%rotation around x
                          setkeys{x sphericalkeys}{#1}%
                          pgfpointxyz{myradius*cos(mytheta)}{myradius*sin(mytheta)*cos(myphi)}{myradius*sin(mytheta)*sin(myphi)}}

                          %along y axis
                          define@key{y sphericalkeys}{radius}{defmyradius{#1}}
                          define@key{y sphericalkeys}{theta}{defmytheta{#1}}
                          define@key{y sphericalkeys}{phi}{defmyphi{#1}}
                          tikzdeclarecoordinatesystem{y spherical}{% %%%rotation around x
                          setkeys{y sphericalkeys}{#1}%
                          pgfpointxyz{myradius*sin(mytheta)*cos(myphi)}{myradius*cos(mytheta)}{myradius*sin(mytheta)*sin(myphi)}}

                          %along z axis
                          define@key{z sphericalkeys}{radius}{defmyradius{#1}}
                          define@key{z sphericalkeys}{theta}{defmytheta{#1}}
                          define@key{z sphericalkeys}{phi}{defmyphi{#1}}
                          tikzdeclarecoordinatesystem{z spherical}{% %%%rotation around x
                          setkeys{z sphericalkeys}{#1}%
                          pgfpointxyz{myradius*sin(mytheta)*cos(myphi)}{myradius*sin(mytheta)*sin(myphi)}{myradius*cos(mytheta)}}


                          makeatother % https://tex.stackexchange.com/a/438695/121799

                          % definitions to make your life easier
                          tikzset{rotate axes about y axis/.code={
                          path (y spherical cs:radius=1,theta=90,phi=0+#1) coordinate(xpp)
                          (y spherical cs:radius=1,theta=00,phi=90+#1) coordinate(ypp)
                          (y spherical cs:radius=1,theta=90,phi=90+#1) coordinate(zpp);
                          },rotate axes about x axis/.code={
                          path (x spherical cs:radius=1,theta=00,phi=90+#1) coordinate(xpp)
                          (x spherical cs:radius=1,theta=90,phi=00+#1) coordinate(ypp)
                          (x spherical cs:radius=1,theta=90,phi=90+#1) coordinate(zpp);
                          },
                          pitch/.style={rotate axes about y axis=#1,x={(xpp)},y={(ypp)},z={(zpp)}},
                          roll/.style={rotate axes about x axis=#1,x={(xpp)},y={(ypp)},z={(zpp)}}
                          }
                          begin{document}
                          tdplotsetmaincoords{60}{130}
                          begin{tikzpicture}[scale=3.2,tdplot_main_coords,>=latex,line join=bevel]
                          coordinate (O) at (0,0,0);
                          draw[thick,->] (O) -- (1.2,0,0) node[anchor=north east]{$x$};
                          draw[thick,->] (O) -- (0,1.2,0) node[anchor=north west]{$y$};
                          draw[thick,->] (O) -- (0,0,1.2) node[anchor=south]{$z$};
                          draw[dashed] (O) -- (-1.2,0,0);
                          pgfmathsetmacro{mya}{0.4}
                          pgfmathsetmacro{myb}{0.8}
                          % lines in the background
                          draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                          draw[gray,dashed] plot[variable=x,domain=-70:-250,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                          draw[gray,dashed] plot[variable=x,domain=tdplotmainphi:tdplotmainphi+180,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                          % fill
                          tdplotsetrotatedcoords{0}{0}{tdplotmainphi}
                          begin{scope}[tdplot_rotated_coords]
                          begin{scope}[roll=-5]
                          fill[gray!40,opacity=0.6] plot[variable=x,domain=0:360,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
                          end{scope}
                          end{scope}
                          % lines in the foreground
                          draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({mya*cos(x)},{0},{myb*sin(x)});
                          draw[gray] plot[variable=x,domain=-70:110,smooth,samples=51]({0},{mya*cos(x)},{myb*sin(x)});
                          draw[gray] plot[variable=x,domain=tdplotmainphi-180:tdplotmainphi,smooth,samples=51]({mya*cos(x)},{mya*sin(x)},0);
                          % redraw "visible" part of the axes
                          draw[thick,->] (mya,0,0) -- (1.2,0,0);
                          draw[thick,->] (0,mya,0) -- (0,1.2,0);
                          draw[thick,->] (0,0,myb) -- (0,0,1.2);
                          pgfmathsetmacro{rvec}{1.5}
                          pgfmathsetmacro{thetavec}{40}
                          pgfmathsetmacro{phivec}{60}
                          tdplotsetrotatedcoords{0}{0}{phivec}
                          begin{scope}[tdplot_rotated_coords]
                          path[name path=elli] plot[variable=x,domain=0:360,smooth,samples=51]({mya*cos(x)},{0},{{myb*sin(x)}});
                          end{scope}
                          tdplotsetcoord{P}{rvec}{thetavec}{phivec}
                          node[anchor=south west,color=red] at (P) {P};
                          begin{scope}[on background layer]
                          draw[-stealth,color=red,very thick,name path global=P] (O) -- (P);
                          end{scope}
                          draw[-stealth,color=red,very thick,name intersections={of=P and elli}]
                          (intersection-1) -- (P);
                          end{tikzpicture}
                          end{document}


                          enter image description here



                          This is an ellipsoid in perspective, see e.g.



                          enter image description here



                          to note that you view on the ellipsoid from the top, as dictated by the angle theta=60 in tdplotsetmaincoords{60}{130}.







                          share|improve this answer














                          share|improve this answer



                          share|improve this answer








                          edited 4 hours ago

























                          answered 5 hours ago









                          marmot

                          82.6k493176




                          82.6k493176






























                              draft saved

                              draft discarded




















































                              Thanks for contributing an answer to TeX - LaTeX Stack Exchange!


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.





                              Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                              Please pay close attention to the following guidance:


                              • Please be sure to answer the question. Provide details and share your research!

                              But avoid



                              • Asking for help, clarification, or responding to other answers.

                              • Making statements based on opinion; back them up with references or personal experience.


                              To learn more, see our tips on writing great answers.




                              draft saved


                              draft discarded














                              StackExchange.ready(
                              function () {
                              StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2ftex.stackexchange.com%2fquestions%2f464580%2fdrawing-a-perspective-ellipse-with-tikz%23new-answer', 'question_page');
                              }
                              );

                              Post as a guest















                              Required, but never shown





















































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown

































                              Required, but never shown














                              Required, but never shown












                              Required, but never shown







                              Required, but never shown







                              Popular posts from this blog

                              What visual should I use to simply compare current year value vs last year in Power BI desktop

                              Alexandru Averescu

                              Trompette piccolo