Conditions on mutli-index + data











up vote
0
down vote

favorite












I have the following Dataframe that I am grouping to get a multi-index Dataframe:



    In[33]: df = pd.DataFrame([[0, 'foo', 5], [0, 'foo', 7], [1, 'foo', 4], [1, 'bar', 5], [1, 'foo', 6], [1, 'bar', 2], [2, 'bar', 3]], columns=['id', 'foobar', 'A'])
In[34]: df
Out[34]:
id foobar A
0 0 foo 5
1 0 foo 7
2 1 foo 4
3 1 bar 5
4 1 foo 6
5 1 bar 2
6 2 bar 3
In[35]: df.groupby(['id', 'foobar']).size()
Out[35]:
id foobar
0 foo 2
1 bar 2
foo 2
2 bar 1
dtype: int64


I want to get lines in "id" where number of "foo" >= 2 AND number of "bar" >= 2 so basically get :



   foobar  A
id
1 bar 2
foo 2


But I'm a bit lost about how I should state this conditions with a multi-index ?



edit : this is not a redundant with How to filter dates on multiindex dataframe since I don't work with dates and I need conditions on the number of particular values in my Dataframe.










share|improve this question
























  • Possible duplicate of How to filter dates on multiindex dataframe
    – sophros
    Nov 22 at 16:45















up vote
0
down vote

favorite












I have the following Dataframe that I am grouping to get a multi-index Dataframe:



    In[33]: df = pd.DataFrame([[0, 'foo', 5], [0, 'foo', 7], [1, 'foo', 4], [1, 'bar', 5], [1, 'foo', 6], [1, 'bar', 2], [2, 'bar', 3]], columns=['id', 'foobar', 'A'])
In[34]: df
Out[34]:
id foobar A
0 0 foo 5
1 0 foo 7
2 1 foo 4
3 1 bar 5
4 1 foo 6
5 1 bar 2
6 2 bar 3
In[35]: df.groupby(['id', 'foobar']).size()
Out[35]:
id foobar
0 foo 2
1 bar 2
foo 2
2 bar 1
dtype: int64


I want to get lines in "id" where number of "foo" >= 2 AND number of "bar" >= 2 so basically get :



   foobar  A
id
1 bar 2
foo 2


But I'm a bit lost about how I should state this conditions with a multi-index ?



edit : this is not a redundant with How to filter dates on multiindex dataframe since I don't work with dates and I need conditions on the number of particular values in my Dataframe.










share|improve this question
























  • Possible duplicate of How to filter dates on multiindex dataframe
    – sophros
    Nov 22 at 16:45













up vote
0
down vote

favorite









up vote
0
down vote

favorite











I have the following Dataframe that I am grouping to get a multi-index Dataframe:



    In[33]: df = pd.DataFrame([[0, 'foo', 5], [0, 'foo', 7], [1, 'foo', 4], [1, 'bar', 5], [1, 'foo', 6], [1, 'bar', 2], [2, 'bar', 3]], columns=['id', 'foobar', 'A'])
In[34]: df
Out[34]:
id foobar A
0 0 foo 5
1 0 foo 7
2 1 foo 4
3 1 bar 5
4 1 foo 6
5 1 bar 2
6 2 bar 3
In[35]: df.groupby(['id', 'foobar']).size()
Out[35]:
id foobar
0 foo 2
1 bar 2
foo 2
2 bar 1
dtype: int64


I want to get lines in "id" where number of "foo" >= 2 AND number of "bar" >= 2 so basically get :



   foobar  A
id
1 bar 2
foo 2


But I'm a bit lost about how I should state this conditions with a multi-index ?



edit : this is not a redundant with How to filter dates on multiindex dataframe since I don't work with dates and I need conditions on the number of particular values in my Dataframe.










share|improve this question















I have the following Dataframe that I am grouping to get a multi-index Dataframe:



    In[33]: df = pd.DataFrame([[0, 'foo', 5], [0, 'foo', 7], [1, 'foo', 4], [1, 'bar', 5], [1, 'foo', 6], [1, 'bar', 2], [2, 'bar', 3]], columns=['id', 'foobar', 'A'])
In[34]: df
Out[34]:
id foobar A
0 0 foo 5
1 0 foo 7
2 1 foo 4
3 1 bar 5
4 1 foo 6
5 1 bar 2
6 2 bar 3
In[35]: df.groupby(['id', 'foobar']).size()
Out[35]:
id foobar
0 foo 2
1 bar 2
foo 2
2 bar 1
dtype: int64


I want to get lines in "id" where number of "foo" >= 2 AND number of "bar" >= 2 so basically get :



   foobar  A
id
1 bar 2
foo 2


But I'm a bit lost about how I should state this conditions with a multi-index ?



edit : this is not a redundant with How to filter dates on multiindex dataframe since I don't work with dates and I need conditions on the number of particular values in my Dataframe.







python pandas






share|improve this question















share|improve this question













share|improve this question




share|improve this question








edited Nov 23 at 10:38

























asked Nov 22 at 16:00









Bongodam

174




174












  • Possible duplicate of How to filter dates on multiindex dataframe
    – sophros
    Nov 22 at 16:45


















  • Possible duplicate of How to filter dates on multiindex dataframe
    – sophros
    Nov 22 at 16:45
















Possible duplicate of How to filter dates on multiindex dataframe
– sophros
Nov 22 at 16:45




Possible duplicate of How to filter dates on multiindex dataframe
– sophros
Nov 22 at 16:45












1 Answer
1






active

oldest

votes

















up vote
1
down vote



accepted










Using all after unstack , then select the one you need , stack back



new=df.groupby(['id', 'foobar']).size().unstack(fill_value=0)
new[new.ge(2).all(1)].stack()
id foobar
1 bar 2
foo 2
dtype: int64





share|improve this answer





















    Your Answer






    StackExchange.ifUsing("editor", function () {
    StackExchange.using("externalEditor", function () {
    StackExchange.using("snippets", function () {
    StackExchange.snippets.init();
    });
    });
    }, "code-snippets");

    StackExchange.ready(function() {
    var channelOptions = {
    tags: "".split(" "),
    id: "1"
    };
    initTagRenderer("".split(" "), "".split(" "), channelOptions);

    StackExchange.using("externalEditor", function() {
    // Have to fire editor after snippets, if snippets enabled
    if (StackExchange.settings.snippets.snippetsEnabled) {
    StackExchange.using("snippets", function() {
    createEditor();
    });
    }
    else {
    createEditor();
    }
    });

    function createEditor() {
    StackExchange.prepareEditor({
    heartbeatType: 'answer',
    convertImagesToLinks: true,
    noModals: true,
    showLowRepImageUploadWarning: true,
    reputationToPostImages: 10,
    bindNavPrevention: true,
    postfix: "",
    imageUploader: {
    brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
    contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
    allowUrls: true
    },
    onDemand: true,
    discardSelector: ".discard-answer"
    ,immediatelyShowMarkdownHelp:true
    });


    }
    });














    draft saved

    draft discarded


















    StackExchange.ready(
    function () {
    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53434617%2fconditions-on-mutli-index-data%23new-answer', 'question_page');
    }
    );

    Post as a guest















    Required, but never shown

























    1 Answer
    1






    active

    oldest

    votes








    1 Answer
    1






    active

    oldest

    votes









    active

    oldest

    votes






    active

    oldest

    votes








    up vote
    1
    down vote



    accepted










    Using all after unstack , then select the one you need , stack back



    new=df.groupby(['id', 'foobar']).size().unstack(fill_value=0)
    new[new.ge(2).all(1)].stack()
    id foobar
    1 bar 2
    foo 2
    dtype: int64





    share|improve this answer

























      up vote
      1
      down vote



      accepted










      Using all after unstack , then select the one you need , stack back



      new=df.groupby(['id', 'foobar']).size().unstack(fill_value=0)
      new[new.ge(2).all(1)].stack()
      id foobar
      1 bar 2
      foo 2
      dtype: int64





      share|improve this answer























        up vote
        1
        down vote



        accepted







        up vote
        1
        down vote



        accepted






        Using all after unstack , then select the one you need , stack back



        new=df.groupby(['id', 'foobar']).size().unstack(fill_value=0)
        new[new.ge(2).all(1)].stack()
        id foobar
        1 bar 2
        foo 2
        dtype: int64





        share|improve this answer












        Using all after unstack , then select the one you need , stack back



        new=df.groupby(['id', 'foobar']).size().unstack(fill_value=0)
        new[new.ge(2).all(1)].stack()
        id foobar
        1 bar 2
        foo 2
        dtype: int64






        share|improve this answer












        share|improve this answer



        share|improve this answer










        answered Nov 22 at 16:07









        W-B

        97.4k73162




        97.4k73162






























            draft saved

            draft discarded




















































            Thanks for contributing an answer to Stack Overflow!


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.





            Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


            Please pay close attention to the following guidance:


            • Please be sure to answer the question. Provide details and share your research!

            But avoid



            • Asking for help, clarification, or responding to other answers.

            • Making statements based on opinion; back them up with references or personal experience.


            To learn more, see our tips on writing great answers.




            draft saved


            draft discarded














            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fstackoverflow.com%2fquestions%2f53434617%2fconditions-on-mutli-index-data%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown





















































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown

































            Required, but never shown














            Required, but never shown












            Required, but never shown







            Required, but never shown







            Popular posts from this blog

            What visual should I use to simply compare current year value vs last year in Power BI desktop

            How to ignore python UserWarning in pytest?

            Alexandru Averescu